
25

How Software Refactoring Impacts Execution Time

LUCA TRAINI, DANIELE DI POMPEO, and MICHELE TUCCI, University of L’Aquila, Italy

BIN LIN, Software Institute - USI, Lugano, Swizerland

SIMONE SCALABRINO, University of Molise, Italy

GABRIELE BAVOTA and MICHELE LANZA, Software Institute - USI, Lugano, Swizerland

ROCCO OLIVETO, University of Molise, Italy

VITTORIO CORTELLESSA, University of L’Aquila, Italy

Refactoring aims at improving the maintainability of source code without modifying its external behavior.

Previous works proposed approaches to recommend refactoring solutions to software developers. The gen-

eration of the recommended solutions is guided by metrics acting as proxy for maintainability (e.g., number

of code smells removed by the recommended solution). These approaches ignore the impact of the recom-

mended refactorings on other non-functional requirements, such as performance, energy consumption, and

so forth. Little is known about the impact of refactoring operations on non-functional requirements other

than maintainability.

We aim to fill this gap by presenting the largest study to date to investigate the impact of refactoring

on software performance, in terms of execution time. We mined the change history of 20 systems that de-

fined performance benchmarks in their repositories, with the goal of identifying commits in which develop-

ers implemented refactoring operations impacting code components that are exercised by the performance

benchmarks. Through a quantitative and qualitative analysis, we show that refactoring operations can sig-

nificantly impact the execution time. Indeed, none of the investigated refactoring types can be considered

“safe” in ensuring no performance regression. Refactoring types aimed at decomposing complex code entities

(e.g., Extract Class/Interface, Extract Method) have higher chances of triggering performance degradation,

suggesting their careful consideration when refactoring performance-critical code.

CCS Concepts: • Software and its engineering→ Software performance; Empirical software valida-

tion; Maintaining software; Software evolution;

Additional Key Words and Phrases: Software maintainability, performance, execution time, refactoring

Lin, Bavota, and Lanza are grateful for the financial support by the Swiss National Science foundation through SNF Project

SENSOR (183587).

Di Pompeo is grateful for the financial support by CIPE-RESTART funding through Ex-EMERGE project.

Authors’ addresses: L. Traini, D. Di Pompeo, M. Tucci, and V. Cortellessa, University of L’Aquila, L’Aquila, Italy;

emails: luca.traini@univaq.it, {daniele.dipompeo, michele.tucci, vittorio.cortellessa}@univaq.it; B. Lin, G. Bavota, and

M. Lanza, Software Institute - USI, Lugano, Lugano, Swizerland; emails: {bin.lin, gabriele.bavota, michele.lanza}@usi.ch;

S. Scalabrino and R. Oliveto, University of Molise, Pesche (IS), Italy; emails: {simone.scalabrino, rocco.oliveto}@unimol.it.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1049-331X/2021/12-ART25 $15.00

https://doi.org/10.1145/3485136

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3485136

25:2 L. Traini et al.

ACM Reference format:

Luca Traini, Daniele Di Pompeo, Michele Tucci, Bin Lin, Simone Scalabrino, Gabriele Bavota, Michele Lanza,

Rocco Oliveto, and Vittorio Cortellessa. 2021. How Software Refactoring Impacts Execution Time. ACM Trans.

Softw. Eng. Methodol. 31, 2, Article 25 (December 2021), 23 pages.

https://doi.org/10.1145/3485136

1 INTRODUCTION

Software systems are continuously changed to meet new requirements, fix defects, and enhance
existing features. A key point for sustainable software evolution is high-quality source code. In-
deed, several empirical studies have provided evidence that low code quality hinders maintenance
and evolution activities [21, 30]. Tools have been developed to recommend to developers how to
improve code quality via refactoring operations (i.e., refactoring recommender systems) [3].

Despite their benefits, most tools ignore the heterogeneity of modern software and the different
priorities that non-functional requirements (e.g., maintainability, performance, security) may have
in different contexts. For example, smartphones have limited battery life and require software
optimized to reduce energy consumption, while embedded systems often come with performance-
critical requirements specifying precise time windows in which a task must be executed.

State-of-the-art refactoring recommenders target the improvement of code quality from a nar-
row perspective, focusing on improving code readability or removing well-known anti-patterns
or code smells [4, 28, 45]. Basically, they aim at improving code maintainability without considering

the possible side effects that the recommended refactorings may have on other, maybe more impor-

tant, non-functional requirements. In other words, they do not consider the priority that different
non-functional requirements may have. For this reason, some researchers started investigating the
impact of “maintainability-driven” refactorings on other non-functional attributes.

Sahin et al. [35] showed that refactoring can change the amount of energy used by a software ap-
plication, while Demeyer [11] investigated the impact on performance of introducing virtual func-
tions in C++ code. These studies started laying the empirical foundations for building more sensible

refactoring recommender systems, able to consider trade-offs between multiple non-functional re-
quirements when making recommendations. The only concrete example is the EARMO tool by
Morales et al. [29], able to support the refactoring of mobile apps by removing anti-patterns while
controlling for the energy efficiency of the app. There is still a lack of empirical knowledge about
the impact of refactoring on non-functional requirements.

We present a comprehensive study to investigate the impact of 16 different types of refactoring
on the execution time of 20 Java systems. The systems have been selected given their attention
to execution time, demonstrated by the presence of performance benchmarks in their code repos-
itories. Using RefactoringMiner [46], we mined the subject systems for “refactoring commits,”
i.e., commits that contain refactoring operations. Each refactoring commit is accompanied by the
code components (in our study, methods or classes) impacted by the refactoring. We manually in-
spected each commit to ensure that refactoring was its only goal. Through dynamic code analysis,
we identified the code components executed by the performance benchmarks in each system and
the refactoring operations that impacted them. Overall, we collected 82 commits implementing
167 refactoring operations impacting performance-relevant components. Each commit provides
several data points for our study, since refactorings implemented in the same commit can impact
different performance-relevant components and, thus, exercise different performance benchmarks.
The total number of data points involved in our study (i.e., pairs of refactoring actions, benchmarks)
is 1,598. The collection of this data required ∼476 machine days. Besides presenting quantitative re-
sults showing the impact of (different types of) refactoring on execution time, we also qualitatively

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

https://doi.org/10.1145/3485136

How Software Refactoring Impacts Execution Time 25:3

analyze cases in which refactoring had a negative impact on execution time, distilling lessons
learned useful to (1) developers, for avoiding specific refactoring scenarios when performance is
key, and (2) researchers, for developing performance-aware refactoring recommenders.

Our results show that refactoring can have a substantial impact on execution time, in both a
positive and negative way. About 55% of the “refactoring commits” cause a statistically significant
performance change in at least one performance benchmark. Moreover, certain types of refactor-
ings are more prone to degrade execution time and should be carefully performed in performance-
critical systems. For example, Extract Class and Extract Method induce regressions, respectively,
in 16% and 12% of impacted performance benchmarks.

2 STUDY DESIGN

The goal of the study is to investigate the impact of refactoring operations on software perfor-
mance. Measuring performance encompasses multiple metrics, such as response time, utilization,
and so forth. In the context of this article, we focus on execution time, intended as the time that
a section of code needs to be executed, without any concurrency or resource sharing with other
software running on the same platform.

The context is represented by 82 commits mined from 20 systems in which developers performed
a total of 167 refactoring operations impacting code components exercised by performance bench-
marks. The study answers the following research questions (RQs):

RQ1 To what extent do developers refactor performance-relevant code components? We want to un-
derstand if developers are reluctant to refactor performance-relevant parts of the system.

RQ2 What is the impact of refactoring on performance? We analyze the relationship between refac-
toring and performance, computing the percentage of cases in which refactoring improved,
deteriorated, or did not impact performance.

RQ3 What types of refactoring operations are more likely to impact performance? We investigate the
relationship between types of refactoring operations (e.g., Extract Method) and performance.
Besides quantitatively analyzing our findings, we report interesting examples in which the
refactoring had a negative impact on performance and we distill lessons learned useful for
both researchers and practitioners.

2.1 Data Collection

We describe the procedure we followed to collect the data needed for our RQs. Specifically, we
(1) selected Java open-source projects with performance benchmark suites, (2) detected refactor-
ing operations to assess their performance impact, and (3) ran benchmarks before and after the
refactoring operations were performed. We report in Figure 1 an overview of the process we used
to collect our data.

2.1.1 Project Selection. We selected projects in which developers defined micro-benchmarks
for performance assessment. To do so, we queried GitHub for Java projects having a dependency
with Java Microbenchmarking Harness (JMH),1 the de facto standard for micro-benchmarks. While
other micro-benchmarking tools are available (e.g., Caliper, Japex, or JUnitPerf), they are either less
popular than JMH, discontinued, or not executable in an automated way [25, 40].

We used the GitHub APIs to obtain the list of the 1,000 most recently indexed projects that
(1) used Maven as the dependency manager (i.e., they had at least a file named pom.xml) and
(2) had an explicit dependency with org.openjdk.jmh.jmh-core, i.e., the core library required
to run JMH. We considered only projects having at least 100 stars, and 88 projects satisfied this

1JMH, https://openjdk.java.net/projects/code-tools/jmh/.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

https://openjdk.java.net/projects/code-tools/jmh/

25:4 L. Traini et al.

Fig. 1. Overview of our data collection process. We report, on top of each step, the RQs for which it was done.

We report below summary information about the three datasets used to answer our research questions.

criterion. In addition to them, we considered two popular Java projects already used in a previous
microbenchmark-related study [24], i.e., RxJava and Log4j2. They were not included in the set
of projects we initially selected because they were not among the 1,000 most recently indexed.
Additionally, RxJava uses Gradle instead of Maven as a build tool.

We manually analyzed the list of projects to find the commands that would build and
run the benchmark suite. In most of the cases build commands are of the form mvn -pl
[jmhModule] -am package, where [jmhModule] is the Maven module2 dedicated to perfor-
mance benchmarks. These commands usually build a jar file [benchmarks.jar] that contains
performance benchmark suites along with all their dependencies (e.g., system code). Benchmark
suites can then be executed through a run command, such as java -jar [benchmarks.jar].
To identify build and run commands, we analyzed the GitHub pages of projects. In the sim-
pler cases, commands are explicitly reported in README files (e.g., JCTools/JCTools3 and
cantaloupe-project/cantaloupe4). In other cases, we derived them through a manual analysis

2Maven modules, https://bit.ly/3con0VI.
3JCTools Benchmarks, https://bit.ly/3r6rmVC.
4Cantaloupe, https://bit.ly/3lFllyf.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

https://bit.ly/3con0VI
https://bit.ly/3r6rmVC
https://bit.ly/3lFllyf

How Software Refactoring Impacts Execution Time 25:5

of pom.xml files (e.g., apache/logging-log4j25 and eclipse/jetty.project6). We were able
to identify working commands and runnable benchmarks for 31 projects (including RxJava and
Log4j2).

2.1.2 Refactorings and Benchmarks Gathering. We used RefactoringMiner [46] to extract refac-
toring operations performed on the default branch of each project. RefactoringMiner is able to
detect 55 types of refactoring operations (e.g., Extract Method, Extract Class, etc.). Given the time-
consuming nature of our data collection, we discarded refactoring operations likely to have negli-
gible or no performance impact. Specifically, we did not consider seven refactoring types: Rename-

related refactoring operations (Rename Method, Rename Class, Rename Variable, Rename Parame-
ter, and Rename Attribute) and package-related refactoring operations (Change Package and Move
Class).

Given a git repository of a Java project, RefactoringMiner reports (1) the commits featuring
refactorings, (2) the refactoring types, and (3) the files and lines affected by the refactoring. We
collected 494,826 refactoring operations (of 48 different types) performed in 43,008 commits and
31 projects. We identified benchmarks suitable to evaluate their performance impact by verifying
for each benchmark b in the project whether the code affected by refactoring operations is exer-
cised by b. We first derived, for each refactoring r performed within the commit c , the set of Java
methods impacted by r , namely Mc

r . We used srcML [8] to parse the Java files affected by r and we
identified the set of methodsMc

r based on the impacted lines of code returned by RefactoringMiner.
For each benchmark b and for each commit c returned by RefactoringMiner, we derived the set

Mc
b

of Java methods executed by b. We built system snapshots both before and after the commit c
is performed and ran dynamic analysis on the benchmarks to identify methods invoked by them. If
we were not able to build one of the two snapshots or to run the benchmark suite, we discarded the
commit c . We discarded 39,665 commits, while 3,343 are retained. The large number of discarded
commits can be explained by two main reasons. First, performance benchmark suites are usually
introduced at later stages of systems history. For example, we found that 22,938 out of the 39,665
discarded commits (∼58%) are removed because the project did not have yet a benchmark suite.
Second, several commits correspond to “unstable” states of the system, which makes it unfeasible
to build the related snapshots and/or run benchmarks. We ran each benchmark b for 1 second and
recorded the methods invoked in the execution using Java Flight Recorder (JFR)7 to derive Mc

b
.

This required ∼221 machine days, involving the profiled execution of more than 4M benchmarks
across 7,901 systems snapshots.

Finally, we intersected the list of methods affected by refactoring operations with those executed
by benchmarks to identify benchmarks suitable to assess the performance impact of refactoring
operations. We identified a set of 3,533 data points. Each data point is denoted by a tuple (p, c,b,R),
where p indicates the project, c the commit, b one of the project’s benchmarks, and R a subset of
refactoring operations performed in c . Each data point is such that every refactoring r ∈ R modifies
at least one method executed by b, i.e., Mc

r ∩Mc
b
� ∅. Note that a refactoring operation may impact

multiple locations in the code. For example, an Extract Method refactoring typically involves a
source method and a target method. In our study, a benchmark b is considered suitable to evaluate
the impact of a refactoring r if it executes at least one of the methods that are impacted by r . The
3,533 data points involved 201 commits, 521 refactoring operations (of 24 types), and 26 projects.

It is worth noting that a commit c may be a tangled commit [17], involving other code changes
(apart from refactorings) that can affect parts of code executed by b. Including tangled commits

5Apache Log4j 2, log4j-perf pom file. https://bit.ly/3r7zSDN.
6Eclipse Jetty, jetty-jmh pom file. https://bit.ly/3lC2vYV.
7JFR, https://tinyurl.com/y7yq8xc2.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

https://bit.ly/3r7zSDN
https://bit.ly/3lC2vYV
https://tinyurl.com/y7yq8xc2

25:6 L. Traini et al.

might mislead the assessment of the impact on performance of refactoring operations. Therefore,
we filtered out such cases by performing manual analysis on all the data points to verify whether
refactoring operations are the only code changes in the commit that affect the code executed by b.

We grouped the data points by commit and randomly assigned them to five of the authors,
who manually analyzed the data points (p, c,b,R) assigned to them by inspecting the diff of the
commit c , the commit message accompanying c , the set of methods invoked by the benchmark
b (namely Mc

b
), and the discussions in the issue tracker related to c (if a link to the discussions

could be identified). Specifically, each author inspected the diff of any commit c on the GitHub
website with the help of a Google Chrome extension named Refactoring Aware Commit Review.
Such extension uses RefactoringMiner to visually augment the diff with refactoring information.
It is able to highlight the type of refactoring, where it occurred in the diff, and which parts of the diff
are identified as “Added code” (new code), “Same code” (code that was only moved), and “Method
call” (call to existing code that was moved). The goal of the manual analysis was to decide whether
b can be reliably used to evaluate the performance impact of the refactoring operations R (i.e.,
no other interfering changes were impacting the methods exercised by b besides the refactoring
operations). If an author classified a data point as relevant for our study (i.e., a pure refactoring
impacting b), it was double-checked by another author. We only kept data points confirmed as
relevant for our study by two of the authors.

The dataset resulting from this process contains 1,534 data points involving 69 commits, 150
refactoring operations, and 16 refactoring types across 17 projects.

2.1.3 Benchmarks Execution/Performance Data Collection. The performance comparison of dif-
ferent software versions in Java applications is far from trivial. There are a number of sources of
non-determinism, such as Just-In-Time (JIT) compilation and optimizations in the Java Virtual Ma-
chine (JVM) [13]. We relied on steady-state performance [13]: we repeated a benchmark execution
for several iterations and collected measurements only after a steady state had been reached. In-
deed, first iterations (often called warm-up iterations) are subject to noise due to performance vari-
ations in transient states, usually caused by class loading and JIT (re)-compilation. Hence, in our
experimental setup, measurements are only collected in iterations that are subsequent to warm-up,
namely measurement iterations. Different VM invocations running multiple benchmark iterations
may result in different steady-state performance data. For this reason, we also repeated benchmark
iterations multiple times on different VM invocations.

JMH allows to define the number of warm-up iterations, measurement iterations, and VM invo-
cations directly in Java code or via command line arguments. We used the number of iterations
defined in the code by benchmark developers for warm-up and measurement iterations, and we
fixed the number of VM invocation to 10 (the JMH default) as done in previous studies [13, 23].

Given the previously described dataset, for each data point (p, c,b,R), we built system snapshots
for the project p both before and after the commit c was performed, and we executed b on both
snapshots, collecting two sets of measurements: Ebefore and Eafter . Both of them are matrices, where
Ei, j represents the observed execution time for the jth benchmark iteration on the ith VM invoca-
tion. Execution of benchmarks for the 1,598 data points of our study required 79 machine days on
a dedicated machine.

Although all data points of our dataset are suitable to evaluate the performance impact of
refactoring operations in general (see RQ2), many of them (∼19%) cannot be used to analyze the
relationship between types of refactoring operations and performance (RQ3), since they involve
multiple types of refactoring operations. We performed a second round of data collection specif-
ically targeting the identification of commits in which a single type of refactoring was performed,
focusing on data points (p, c,b,R) where all the refactoring operations r ∈ R are of the same type.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

How Software Refactoring Impacts Execution Time 25:7

To speed up the process, we removed 41 refactoring types from our data collection since, dur-
ing the data collection performed for RQ2, they had few related data points (<50). Also, we did
not collect additional data points concerning Extract Method since we already had sufficient data
points in our dataset (166 data points, 40 refactoring operations, 18 commits, and nine projects). As
a result, the second round of data collection focused on six types of refactoring: Extract Superclass,
Inline Variable, Extract Class, Move Method, Inline Method, and Extract Interface.

For the supplementary data collection we mined refactorings (of the six targeted types) by
launching RefactoringMiner on all the branches of all 31 projects. We also derived commands
to run and build benchmarks for 15 additional projects gathered from [24]. Then, we derived
(p, c,b,R) data points, as described in Section 2.1.2, but discarded those having multiple types of
refactoring operations in R. Finally, performance measurements were collected for each data point
as described in Section 2.1.3. Overall, we found 64 additional data points, which involve 17 refac-
toring operations, spanning 13 commits and six projects. The profiled execution of benchmarks
to derive Mc

b
sets lasted 176 machine days. The execution of the benchmarks took ∼11 machine

hours.
This additional dataset is only used to analyze the relationship between types of refactoring

operations and performance (RQ3), while it is used neither to evaluate the performance impact
of refactoring operations at coarse-grained level (RQ2) nor to evaluate the density of refactoring
operations in parts of the system known to be performance relevant (RQ1). The rationale behind
this decision is that the additional data points collected for RQ3 are by construction only related
to six refactoring types and ignore other refactoring operations performed by developers in the
change history of the mined projects. When answering RQ1 and RQ2 it is important to use a dataset
that reflects the actual distribution of refactoring types in the versioning system of the subject
projects, something that would not happen by including the additional data points collected for
RQ3.

We collected 1,598 data points, 167 refactoring operations of 16 types, 82 commits, and over
20 projects.

2.2 Data Analysis

Answering RQ2 and RQ3 requires to determine whether refactoring operations have an effect (ei-
ther positive or negative) on software performance. For this reason, we first describe the process
we used to determine, for a given data point (p, c,b,R), whether refactoring operations R cause
regression, improvement, or unchanged performance in benchmark b.

2.2.1 Reliably Detecting Performance Change. To determine whether refactoring operations
lead to non-negligible performance change, we used the approach proposed by Kalibera and Jones
to build confidence intervals for the ratio of mean execution times [19, 20]. Compared to other
performance change detection techniques (e.g., hypothesis testing with Wilcoxon rank-sum com-
bined with effect sizes [13, 23] and change detection through testing for overlapping confidence
intervals [13, 23]), the main benefit of the Kalibera and Jones technique is that, in addition to a re-
liable performance-change detection, it provides a clear and rigorous account of the performance
change magnitude and of the uncertainty involved. For example, it can indicate that a system ver-
sion is slower (or faster) than another by X% ± Y% with 95% confidence. To build the confidence
interval we used bootstrapping [10], with hierarchical random re-sampling [34] and replacement.
Re-sampling was applied on two levels [20]: VM invocations and iterations.

We ran 1,000 bootstrap iterations. At each iteration, new realizations of Ebef or e and Eaf ter mea-
surements were simulated and the relative performance change was computed. The simulation of

the Êbef or e new realizations randomly selected a subset of real data from Ebef or e with replacement.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

25:8 L. Traini et al.

Similarly, Êaf ter was simulated by randomly sampling Eaf ter . The two means (μbef or e and μaf ter)
and the relative performance change (ρ) for simulated measurements were computed as follows:

μbef or e =

∑n
i=1

∑m
j=1 Ê

bef or e
i, j

mn
and μaf ter =

∑n
i=1

∑m
j=1 Ê

af ter
i, j

mn
and ρ =

μaf ter − μbef or e

μbef or e
,

where n is the number of VM invocations, m the number of measurements iterations, j the jth
(simulated) benchmark iteration, and i the ith (simulated) VM invocation.

After the termination of all iterations, we collected a set of simulated realizations of the relative
performance change P = {ρi | 1 ≤ i ≤ 1000} and estimated the 0.025 and 0.975 quantiles on
it, for a 95% confidence interval. Given a (p, c,b,R) data point, refactoring operations R lead to
a regression of b, if the lower limit of the confidence interval for relative performance change of
mean execution times is greater than 0 (i.e., b becomes slower after the commit c). Similarly, there
is an improvement in b if the upper limit of the confidence interval is less than 0 (i.e., b is faster
before the commit). Otherwise, we consider performance as unchanged.

2.2.2 RQ1: To What Extent Do Developers Refactor Performance-Relevant Code Components?

Performance benchmarks usually cover only parts of the system that are relevant to performance
[22]. In our study, we consider a Java method as performance relevant if it is covered by at least one
benchmark. In other words, given a snapshot of the system c and a method m, we consider m as
performance relevant if there exists at least one benchmark b such thatm ∈ Mc

b
; i.e.,m is executed

by b. On the other hand, a method is considered non-relevant in terms of performance if it is not
covered by any benchmark. To answer RQ1, we compared the density of refactoring operations in
performance-relevant code to the one in other parts of the system. We considered commits where
at least one refactoring was detected and for which we were able to collect methods executed
by benchmark suites. Table 1 reports, for each project, the number of commits and refactoring
operations considered in this RQ. For each commit c we computed:

• PMc : the number of performance-relevant methods (i.e., methods executed by at least one
benchmark) subject to at least one refactoring
• NPMc : the number of performance-relevant methods not subject to any refactoring

operation
• OMc : the number of methods in the project not executed by any benchmark and subject to

at least one refactoring
• NOMc : the number of methods in the project not executed by any benchmark and not subject

to any refactoring

Then, we computed, for every subject system, refactoring density in performance-relevant code
as the ratio of the number of performance-relevant methods subject to refactoring operations over
the total number performance-relevant methods in the entire system history:

RDPC =

∑
c ∈C PMc

∑
c ∈C PMc + NPMc

,

whereC is the set of commits under analysis for the subject system. Similarly, we measured refac-
toring density in code not considered as performance relevant:

RDNPC =

∑
c ∈C OMc

∑
c ∈C OMc + NOMc

.

It is worth noting that we may count several times the same method if it appears in different
snapshots of the system. For example, given a system with two commits, c1 and c2, let us consider
a performance-relevant methodm subject to at least a refactoring operation in both c1 and c2.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

How Software Refactoring Impacts Execution Time 25:9

Table 1. RQ1

Project

Analyzed Commits

(Total)

Refactorings

(Total)
Methods

(Average)
Performance-relevant Methods

(Average)

alibaba/fastjson 34 85 1,249 21

apache/arrow 38 434 2,470 192

apache/camel 327 6,059 53,440 316

apache/commons-bcel 25 98 2,551 204

apache/logging-log4j2 405 1,700 2,161 300

arnaudroger/SimpleFlatMapper 80 1,291 3,148 170

cantaloupe-project/cantaloupe 204 1,297 1,767 121

debezium/debezium 82 417 2,843 107

easymock/objenesis 10 108 88 11

eclipse-ee4j/jersey 28 435 9,338 351

eclipse-vertx/vert.x 139 1,377 4,071 96

eclipse/jetty.project 392 2,218 12,400 86

eclipse/rdf4j 35 240 11,004 737

elastic/apm-agent-java 85 328 1,162 63

HdrHistogram/HdrHistogram 10 55 593 52

iotaledger/iri 29 329 1,220 50

JCTools/JCTools 75 740 870 95

jdbi/jdbi 31 107 1,282 170

jooby-project/jooby 59 425 1,546 7

kiegroup/drools 118 885 26,909 220

netty/netty 88 482 13,223 1,102

OpenFeign/feign 12 50 457 107

OpenHFT/Chronicle-Core 1 1 154 3

openzipkin/zipkin 15 165 1,698 249

panda-lang/panda 145 1,538 1,758 56

prestodb/presto 810 9,558 25,527 464

prometheus/client_java 6 13 264 35

protostuff/protostuff 11 93 1,994 35

pwm-project/pwm 24 560 4,551 6

ReactiveX/RxJava 16 225 3,915 943

zalando/logbook 9 103 513 99

Number of commits and refactoring operations used to evaluate density of refactoring operations. The table also reports

(for these commits) the average number of methods in the system and the average number of methods covered by at

least one performance benchmark.

Such a method is counted both in PMc1 and in PMc2 ; i.e., it is counted twice in the formula of
RDPC . We do this because the same method can have different properties in different commits: it
could be counted as PMc1 in a snapshot and as NPMc2 /OMc2 /NOMc2 in another one.

Finally, we report, for systems with more than 50 commits, refactoring density in performance-
relevant code as well as refactoring density in other parts of the system via bar charts (Figure 2).
We also perform Fisher’s exact test [39] to test whether the proportions of

∑
c ∈C PMc/

∑
c ∈C NPMc

and
∑

c ∈C OMc/
∑

c ∈C NOMc differ significantly.
In addition, we used the Odds Ratio (OR) [39] of the two proportions as effect size measure. An

OR of 1 indicates that refactoring performance-relevant code is equally likely as refactoring other
parts of the system. An OR greater than 1 indicates that refactoring operations are more likely
performed in code non-relevant from a performance perspective. An OR lower than 1 indicates
that refactorings are more likely performed in performance-relevant code.

2.2.3 RQ2: What Is the Impact of Refactoring on Performance? Concerning RQ2, we need to
assess the impact of refactoring-related commits on software performance. In this RQ, we con-

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

25:10 L. Traini et al.

Table 2. RQ2 and RQ3

Project Stars Commits Benchmarks

alibaba/fastjson 22,752 3,793 4

apache/arrow 6,684 8,065 47

apache/camel 3,524 49,254 23

apache/logging-log4j2 1,075 11,238 585

cantaloupe-project/cantaloupe 172 4,376 11

eclipse/rdf4j∗ 229 4,279 132

eclipse-vertx/vert.x 11,552 4,825 41

hazelcast/hazelcast∗∗ 4,079 30,670 144

HdrHistogram/HdrHistogram 1,786 740 75

iotaledger/iri 1,183 2,701 3

JCTools/JCTools 2,518 971 172

jgrapht/jgrapht∗∗ 1,802 3,185 91

kiegroup/drools 3,356 12,894 1

netty/netty 25,443 10,100 1,686

OpenFeign/feign∗ 6,471 857 13

prestodb/presto 11,454 18,431 1,534

protostuff/protostuff 1,550 1,580 31

raphw/byte-buddy∗∗ 3,904 5,383 39

ReactiveX/RxJava 43,867 5,810 1,302

zalando/logbook 733 1,626 20

Overview of projects considered in the evaluation of the performance

impact of refactoring operations (i.e., for which at least one data point

was discovered). Projects marked with (∗) are only considered in RQ2,

those marked with (∗∗) are only considered in RQ3.

sider the dataset gathered from the first round of data collection, which involves 1,534 data points,
69 commits, 150 refactoring operations (among 16 refactoring types), and 17 projects (see Table 2
for an overview of the study subjects’ projects).

Each refactoring-related commit has one of the following effects on the system performance:

• Regression: the commit leads to performance regression of some benchmarks without im-
proving performance of any other benchmark.
• Improvement: the commit leads to performance improvement of some benchmarks without

worsening performance of any other benchmark.
• Mixed: the commit leads to performance regression of some benchmarks and improves the

performance of some other benchmark.
• Unchanged: the commit keeps the benchmark execution time unmodified.

We report the percentages of refactoring-related commits falling in the four above categories via
bar charts in Figure 3. We also report the percentages of data points showing regressions, improve-
ments, or unchanged performance, to evaluate how code affected by refactoring operations is im-
pacted in terms of software performance. In order to provide a comprehensive view on the perfor-
mance impact of refactoring operations, we also report the magnitude of the performance change
for benchmarks showing regression and improvement. The magnitude of performance change, for
a given data point, is measured using the estimated mean relative performance change (i.e., the
center of confidence interval; see Section 2.2.1). We depict the distribution of these means via box
plots for both data points showing regressions and data points showing improvements in Figure 5.

2.2.4 RQ3: What Types of Refactoring Operations Are More Likely to Impact Performance? To
answer RQ3, we need to isolate the effect of different refactoring types on software performance.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

How Software Refactoring Impacts Execution Time 25:11

We selected from our dataset the data points (p, c,b,R) having all refactoring operations r ∈ R of
the same type. Types of refactoring with less than 50 associated data points are excluded from this
analysis. We analyzed 1,156 data points from 18 systems (see Table 2) involving seven refactoring
types: Extract Method (166 data points), Extract Superclass (90), Inline Variable (65), Extract Class
(398), Move Method (184), Inline Method (66), and Extract Interface (187).

To analyze the impact on software performance of each refactoring type, we report via bar charts
the percentage of data points showing regression, improvement, and unchanged performance (see
Figure 6). We also report the magnitude of regressions and improvements for each type of refactor-
ing via box plots (see Figures 7 and 8). In the latter analysis we discarded types having negligible
impact in terms of both regression and improvement, i.e., those that have less than 5% associated
data points showing regressions or improvements. Finally, we discuss interesting examples related
to different types of refactoring operations.

2.2.5 Qualitative Analysis. To better understand how and why refactoring operations impact
the performance, five of the authors manually inspected commits, issues, and pull requests related
to cases in which refactoring had a negative impact on execution time. We report interesting cases
and discuss them along with RQ2 and RQ3 results.

2.3 Replication Package

We provide in our replication package [44] the complete data needed to replicate our findings.
In particular, we share the SHA code of the subject commits from each of the analyzed systems,
together with the refactoring operations detected in them and the results of the benchmarks’ ex-
ecution. We also provide the Python scripts used to generate the figures and tables reported in
Section 3.

3 RESULTS DISCUSSION

3.1 RQ1: To What Extent Do Developers Refactor Performance-Relevant

Code Components?

Figure 2 reports the density of refactoring operations in performance-relevant and non-
performance-relevant methods by software system. The darker bars represent refactoring density
in performance-relevant methods, i.e., the chance that a performance-relevant method is subject
to refactoring. Similarly, the lighter bars represent refactoring density in other methods of the
system (i.e., non-performance relevant).

As previously explained, we group all systems for which we collected less than 50 commits
relevant for RQ1 in “others” (bottom of Figure 2). The first observation that can be made by looking
at Figure 2 is that no matter whether the method is performance relevant or not, the chance that
it is subject to refactoring operations is quite low (i.e., less than 1.5%—all bar charts are below the
0.015 on the x axis).

When comparing the refactoring density in performance-relevant methods with that of non-
performance-relevant methods, interesting trends can be observed. In only two projects (i.e., camel
and drools), developers performed more refactoring operations on performance-relevant meth-
ods. However, according to Fisher’s exact test, only in one project (i.e., camel) is such a difference
statistically significant (p-value < 0.05) with an OR of 0.37.

For all other projects, the refactoring density is higher in non-performance-relevant methods.
Among those, only two projects (i.e., jooby and vert.x) have a p-value larger than 0.05 (i.e., the
difference is not statistically significant). For all other projects, the refactoring density difference
is statistically significant, with ORs varying from 1.47 to 11.19. This result indicates that in most
projects, the density of refactoring operations is higher in non-performance-relevant methods.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

25:12 L. Traini et al.

Fig. 2. RQ1. Density of refactoring operations in performance-relevant methods and in other methods.

Fisher’s exact test results accompanied with Odds Ratio are also reported.

Fig. 3. RQ2. Percentages of refactoring-related commits leading to regression, improvement, mixed effect, or

unchanged execution time.

We conjecture that the potential performance impact might be one of the factors that discour-
ages developers from refactoring performance-relevant methods. Validating such a conjecture
would require a dedicated empirical study surveying developers. While this is out of the scope
of this work, we proceed in the following RQs with investigating the impact on the execution time
of the refactoring operations that focused on performance-relevant methods.

3.2 RQ2: What Is the Impact of Refactoring on Performance?

Figure 3 shows the impact of refactoring-related commits on execution time.
It is worth noting that multiple benchmarks can be involved in each commit. As can be

seen from the chart, more than 40% of refactoring-related commits do not result in any per-
formance change. In the rest of the cases, a large percentage of the commits (>30%) have a
mixed effect on performance, in that on the same commit some benchmarks induce performance

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

How Software Refactoring Impacts Execution Time 25:13

Fig. 4. RQ2. Percentages of benchmarks affected by refactoring-related commits (i.e., data points) showing

regressions, improvements, or unchanged execution time.

Fig. 5. RQ2. Relative performance change of benchmarks due to refactoring operations. The darker box plot

reports results for benchmarks showing regression, while the lighter box plot reports results for benchmarks

showing improvement.

regression, whereas some other ones induce improvement. Around 15% of the commits only lead to
performance improvement, and slightly more than 10% cause only performance regression. This
is not surprising as code affected by refactoring operations can be exercised in different ways
by benchmarks. For example, each benchmark may involve the execution of a different set of
performance-relevant methods or the execution of the same methods with different inputs, which
can lead to diverse performance behaviors. From these results, we can observe that a large
percentage of the commits (>55%) (i.e., the ones that are not classified as unchanged) cause a
statistically significant performance change (either positive or negative) on methods of the system
that are considered relevant for performance. Specifically, when considering the negative impact
on performance due to refactorings, more than 40% of the commits cause performance regression
in at least one benchmark. This is particularly relevant considering that performance issues are
usually discovered through specific tests and inputs [18, 27, 43].

By inspecting how the performance is impacted in each benchmark affected by refactoring-
related commits (Figure 4), we can find that in more than 75% of cases, the performance is not
changed.

Neither performance regression nor performance improvement is common, and they both take
place in around 10% of the benchmarks. This suggests that, similarly to common performance is-
sues [18], performance changes introduced by refactoring operations require specific benchmarks
to be exposed [27, 43]. That is, even when the commit causes a performance change in some of the
benchmarks, there are often other benchmarks for which performance remains unchanged.

We further looked into the extent of performance regression or improvement (Figure 5), and
we can find that the medians of relative performance changes are below 5% for both performance
improvement and regression.

About 50% of regressions involve performance changes between 2% and 6%, and, similarly, 50%
of improvements range between 1% and 6%. Moreover, it is rare that refactoring-related commits
can lead to a performance change of more than 15%. This is expected considering that we are

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

25:14 L. Traini et al.

investigating code changes performed in a single code commit. The magnitude of these changes,
which may appear negligible, is still relevant as benchmarks measure performance at the method
level [22–24]. Indeed, even a relatively small performance change at the method level may poten-
tially lead to a huge performance deviation at the system level.

For example, in the pull request 86148 of netty/netty we found that a code refactoring was
not accepted as it causes “non-negligible” performance regression (i.e., up to 5%) in two bench-
marks. This confirms that performance changes due to refactoring operations (see Figure 4) may
be relevant for performance.

The pull request 8614, mentioned above, also highlights interesting aspects about the relation-
ships between refactoring activities and software performance. The goal of this pull request is to
achieve “less code duplication” and “better encapsulation” by removing duplicated logic from two
classes with the help of a common helper class, and it involves several refactoring operations such
as Extract Class, Change Parameter Type, and Move Method. After the performance regressions
were detected in the two benchmarks, the developer revised the code changes and eliminated the
regression, and finally the pull request was merged. Nevertheless, while our benchmark results
show no regression on the benchmarks used by developers (which is in line with developer ex-
pectations), we did find significant performance regressions (up to 3 times) on other benchmarks
not considered by developers. This may suggest that comprehensively analyzing the performance

impact of refactoring operations is not trivial, and even experienced developers might consider only a

part of it.
Another interesting fact is that although some projects attach great importance to the perfor-

mance, they merge refactoring-related commits without verifying their performance impact. For
example, two commits (49ac2da9 and f537eda10) performing “Extract Superclass” operations were
proposed in the same pull request 18511 for the project JCTools/JCTools, in order to “homog-
enize atomic queues” (i.e., making the atomic queue class AtomicArrayQueue as similar to the
unsafe queue ArrayQueue as possible). While the author expressed concerns about performance
(“Performance impact of this is unverified”), the pull request was merged without any discussion.
Nevertheless, we found that these commits have non-negligible impact on performance (up to
11%). We conjecture that the long execution time required to run performance benchmark suites
(e.g., more than 2 hours for JCTools/JCTools [22]) may prevent developers from verifying the
performance impact of refactoring operations. The adoption of state-of-the-art techniques [24] to
reduce benchmarks’ execution time without sacrificing result quality may be beneficial for this
problem. Also, similarly to what has been done to predict the impact of a refactoring operation on
quality metrics before applying it [6], it might be beneficial to design techniques able to predict
the impact of refactoring operations on performance.

Finally, since our analyses have been conducted at commit-level granularity and a commit can
involve multiple refactoring operations, we also investigated whether a correlation exists between
the number of refactoring operations in a commit and the magnitude of the change in performance.
We computed the Spearman rank correlation coefficient, which reported a lack of correlation be-
tween the number of refactorings in the commits and performance change (ρ = 0.118). This is
somehow expected when assessing the impact of refactoring commits grouping together different
types of refactoring, as done in RQ2. Indeed, some of them may bring performance improvements,
while others may bring regressions, thus not showing a clear trend.

8https://github.com/netty/netty/pull/8614.
9http://bit.ly/3oRLfza.
10http://bit.ly/34aqgjd.
11https://github.com/JCTools/JCTools/pull/185.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

https://github.com/netty/netty/pull/8614
http://bit.ly/3oRLfza
http://bit.ly/34aqgjd
https://github.com/JCTools/JCTools/pull/185

How Software Refactoring Impacts Execution Time 25:15

Fig. 6. RQ3. Performance impact of different types of refactoring on the associated benchmarks (i.e., data

points). Percentages of benchmarks showing regression or improvement are reported for each refactoring

type.

Summing up, most refactoring-related commits lead to performance change, with these changes
usually affecting only a subset of the involved benchmarks. Moreover, we found that a large per-
cent of commits (>55%) lead to regression in at least one benchmark. Performance regressions and
improvements due to refactoring-related commits have relatively similar frequencies, and they can
bring a performance change up to 12% in most of the cases. Nevertheless, these relatively small per-
formance changes may still be relevant for system-level performance, especially in case of methods
involved in “core features.” Finally, our results indicate that the analysis of the performance impact
of refactoring activities may be non-trivial even for experienced developers, as these changes can
have diverse (and often mixed) effects on performance-relevant methods. This problem is further
exacerbated by the long execution time required to run benchmark suites, which may prevent
developers from verifying the performance impact of their refactoring operations.

3.3 RQ3: What Types of Refactoring Operations Are More Likely

to Impact Performance?

Figure 6 reports the percentage of benchmarks in which the performance is positively or negatively
impacted by each type of refactoring operation considered in RQ3.

The chart reveals that all of the refactoring types can lead to both improved and regressed perfor-
mance. Overall, Extract Class/Interface/Method/Superclass refactoring operations are more likely
to impact performance than Inline Method/Variable and Move Method. When performing Extract
Class/Interface/Method and Inline Method, the performance is more likely to degrade, while when
performing Inline Variable and Move Method, there is a higher chance of performance improve-
ment. Extract Superclass leads to similar amounts of performance regression and improvement.

The Extract Class refactoring is the more closely related to performance regression, with more
than 16% of impacting benchmarks showing such a trend. Moreover, the magnitude of regression
introduced by Extract Class is higher when compared to other types of refactorings (50% of regres-
sions lead to a performance change between 2% and 7%; see Figure 7).

Indeed, Extract Class refactoring may induce a higher number of allocated objects, which may
regress the performance of the system. For example, the description of the issue LOG4J2-129512

of apache/logging-log4j2 states, “it is not always obvious that some code creates objects, so

12https://issues.apache.org/jira/browse/LOG4J2-1295.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

https://issues.apache.org/jira/browse/LOG4J2-1295

25:16 L. Traini et al.

Fig. 7. RQ3. Relative performance change of benchmarks showing regressions due to different types of refac-

toring operations.

it is easy for regressions to creep in during maintenance code changes.” Indeed, according to
apache/logging-log4j2 developers,13 “garbage collection (GC) pauses are a common cause of la-

tency spikes” and the allocation of more temporary objects “contributes to pressure on the garbage

collector and increases the frequency with which GC pauses occur.” Therefore, when Extract Class
refactoring causes a higher number of allocated objects, it may increase the frequency of GC pauses,
thereby leading to performance regression. Another interesting fact is that even the same Extract
Class operation can have significantly different performance impact on slightly different versions
of software. For example, when we inspected a case of non-negligible performance regression (i.e.,
performance reduced 8% and 20% for two benchmarks, respectively) caused by Extract Class in
the commit 90d82d214 of apache/logging-log4j2, we found the same refactoring operation was
performed in another branch of the same project15 (9ad360316). However, this refactoring only
causes regression of up to 5% for seven different benchmarks. This finding suggests that even the
same Extract Class operation can have different impact on performance under different contexts.

Extract Interface, Extract Superclass, and Extract Method also have higher chances to lead to
performance regressions compared to other refactorings (respectively, ∼15%, ∼14%, and ∼12% of
the involved benchmarks show regression). While the former two cause less intense regressions,
Extract Method provides regressions with similar magnitudes to those observed for Extract Class
(see Figure 7). Although improvements due to Extract Method are less frequent than regressions,
they lead to higher performance changes (50% of them range from 2% to 14%; see Figure 8).

This behavior relies on the relationship between Extract Method and specific runtime opti-
mizations employed by the JVM, as smaller methods have more chances to be inlined during
runtime optimization of a Just-In-Time (JIT) compiler. Extract Method refactoring is common
practice to achieve automatic inlining at runtime. It is often difficult to identify such optimization
opportunities as they require specific conditions. To become a candidate for inlining, a method
must satisfy at least one of two conditions: (1) its bytecode size must be within 35 bytes (by
default), or (2) it must be called more often than a pre-defined threshold (10,000 invocations
by default) and its bytecode size must be within 325 bytes (by default) [32]. Usual benchmark
configurations are ineffective to identify such optimization opportunities. In commit ceb0a6217 of

13http://bit.ly/3apTONJ.
14http://bit.ly/2WnBOv3.
15Note that, according to our manual analysis, this is the only case in which the same commit was performed in multiple

branches of the system.
16http://bit.ly/38cVpnd.
17http://bit.ly/3gXtiN2.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

http://bit.ly/3apTONJ
http://bit.ly/2WnBOv3
http://bit.ly/38cVpnd
http://bit.ly/3gXtiN2

How Software Refactoring Impacts Execution Time 25:17

Fig. 8. RQ3. Relative performance change of benchmarks due to different types of refactoring operations.

apache/logging-log4j2, which “refactors a large method into smaller methods to enable inlining,”
improvement is expected in execution time as these smaller methods have more chances to be
inlined. Our benchmark results only displayed performance regressions. This kind of optimization
may not manifest when evaluating performance through default benchmarking configurations, as
they are triggered only in specific scenarios (the authors mentioned in the commit message that
“the new code is all inlined after ∼7000 invocations”). We envision that future research may leverage
static characteristics of the code (e.g., size of methods) combined with its dynamic behavior
(e.g., the number method invocations during benchmarking) to design recommenders that
automatically suggest potential optimization opportunities through Extract Method refactoring.

For the other types of refactoring, Inline Variable has a relatively high chance to lead to perfor-
mance improvement (14% of the benchmarks with a performance change ranging from 3% to 6% in
50% of the cases), while Move Method and Inline Method have lower chances to bring performance
change. Moreover, the performance change caused by the Move Method has never reached 5%.

As already done for RQ2, also in this case we investigate a possible correlation between the
number of refactoring operations in a commit and the magnitude of the change in performance. We
did this analysis by refactoring type. Extract Method and Extract Class were the two showing the
strongest Spearman rank correlation coefficient, which, however, still showed a poor correlation
between number of refactorings in a commit and performance change (ρ = 0.213 for Extract
Method and ρ = 0.108 for Extract Class).

In summary, the impact of refactoring on performance varies from type to type. No refactoring
type guarantees the absence of performance regression. Extract Class and Extract Method have
a higher chance of causing larger performance regression than other types of refactoring. When
Extract Method causes performance improvement, it leads to larger performance changes.

4 THREATS TO VALIDITY

Construct validity. The main threats to the construct validity of our study are related to the
process we adopted to measure performance variations caused by refactoring.

To mitigate the risk of unstable performance benchmark results, we perform, within each VM
invocation, multiple warmup and measurement iterations according to the JMH configuration
defined by software developers, and we fix the number of VM invocations to 10 as done in
previous studies [13, 23]. We did not use developer custom configurations for VM invocations,
since a previous study [24] showed that developers often rely on a single VM invocation, which
is considered a bad practice as inter-JVM-variability is common [13, 19, 22]. Using configurations
with a higher number of iterations or VM invocations may lead to more stable results. Prior work
[13] suggests to dynamically stop measurement iterations when certain quality criteria are met

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

25:18 L. Traini et al.

(e.g., coefficient of variation < 0.02). Nevertheless, we found this approach impractical for our
study due to extremely long execution times. Software compilation may also induce performance
variability [31] due to the non-deterministic nature of Java compilation strategies [14, 19]. Such
variability can be mitigated through compiler replay [14, 19] to avoid bias introduced by compi-
lation. However, these approaches can dramatically increase the time needed for benchmarking
as they add another level of repetition, which makes them impractical for our study. To reliably
detect performance change, while dealing with performance variability, we followed best practices
[5, 19, 23, 24]. We estimate the confidence interval for relative performance change with bootstrap
[10, 20] by employing hierarchical random resampling with replacement [34], and we detect per-
formance change if there is statistically significant difference—i.e., the confidence interval does not
contain 0.

Imprecisions in the detected refactorings could also have affected our results. However, we used
a highly precise state-of-the-art tool (RefactoringMiner [46]), reported to have a 98% precision and
87% recall. Also, while it is possible that we missed relevant data points for our study due to false
negatives (i.e., refactoring-related commits missed by RefactoringMiner), we are confident about
the absence of false positives in our dataset, since we manually inspected all the commits subject
of our study to exclude those introducing, besides the detected refactorings, other code changes.

Conclusion validity. Wherever possible we used appropriate statistical procedures with
p-value and effect size measures to test the significance of the differences and their magnitude.

Internal validity. Those are mainly related to a missing causation link between refactorings
and changes in performance as assessed by the benchmarks, and to possible confounding factors
that may influence such a relationship. We controlled for tangled commits, ensuring that the com-
mits considered in our study only focused on refactoring-related changes. However, (1) in our
observational study we do not claim causation, and (2) at least, we complemented the quantitative
analysis with a qualitative one, which helped in better understanding the influence of refactoring
on performance.

External validity. While the number of systems and the subject commits are limited as com-
pared to those of MSR studies, it is worth nothing that the data collection procedure for our study
required 15 months of work. Moreover, the number of systems we consider is larger than recent
studies investigating software performance research questions (see, e.g., [12, 22, 24, 33]), while the
numbers of commits and performance tests involved are similar. Still, the generalizability of our
findings is limited to the analyzed refactoring types and systems.

5 RELATED WORK

Given the goal of our study, we discuss the literature related to studies investigating (1) software
performance in the context of code evolution and (2) the impact of refactoring operations on quality
attributes.

5.1 Empirical Studies Relating Performance to Software Evolution

Performance analysis of running software systems has been tackled by different perspectives in
the last few years (e.g., through models at runtime [2, 15]). However, given the goal of our article,
we focus here on the domain of empirical analyses, possibly supported by benchmark techniques.

Han et al. [16] have introduced StackMine, a tool exploiting stack traces to allow performance
debugging of a considerable amount of data on Windows-based systems. Our approach works at
a higher level of abstraction because, on the basis of traces generated through JMH microbench-
marks, we aim at identifying the (beneficial or degrading) effects of refactoring actions on software
performance.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

How Software Refactoring Impacts Execution Time 25:19

Sandoval et al. [36–38] have analyzed performance regression of different versions of applica-
tions in an object-oriented language and development environment named Pharo.18 They have
analyzed 19 different projects and a total of 1,125 different versions. The main differences between
our approach and the one in [36–38] are first, the context (i.e., Java systems vs Pharo), and second,
we have exploited JMH as a micro-benchmarking library instead of building an in-house bench-
mark suite. Furthermore, we have analyzed 20 different open-source projects by generating 1,598
data points.

Daly et al. [9] have presented mechanisms for detecting performance regression in an indus-
trial project, i.e., MongoDB. They automatically detect change-points’ variability to identify the
commit causing a specific performance degradation event. Then, those labeled points have been
manually checked to discard false positives. Our process starts from commits labeled with specific
refactoring actions and, then, look at their effect on performance. Also, our study spans different
projects.

Laaber et al. [24] have focused their study on reducing the required execution time of micro-
benchmarking tests through a dynamic reconfiguration of JMH. They have defined three ways to
detect when a test reaches the performance peak (i.e., the steady state) and then they apply their
reconfigurations. In our study, it would be interesting to use the approach proposed by Laaber
et al. with the aim of reducing the duration of our tests. However, we have decided to exploit the
default JMH configurations (i.e., the ones associated to the different commits) to be as compliant
as possible with developers intents.

Chen et al. [7] have studied the influence of code changes on performance degradation in the
context of the Python programming language. They have exploited unit tests, along with a pro-
filer, to extract performance data. Our study design differs from the one by Chen et al., since we
target Java programming language and exploit micro-benchmarks, instead of unit tests, to extract
performance data. Also, we focus on a specific type of code changes (i.e., refactoring actions).

Reichelt et al. [33] have compared unit tests to discover performance regression between ver-
sions of nine long-lived Java open-source projects. They use such a corpus to infer performance
variations through code changes. We rely on JMH instead of unit tests, because the former avoids
JVM optimizations that may produce unreliable performance data.

Ding et al. [12] have analyzed whether unit tests can be aimed at assessing performance. In par-
ticular, they have targeted two systems (i.e., Cassandra19 and Hadoop20), and they have extracted
functional tests that can be performance related by digging developers’ message backlogs. We
have instead dug the GitHub corpus in order to extract projects equipped with JMH tests, and we
have investigated the correlation between refactoring actions and performance degradation in 20
systems.

Table 3 lists the sizes of corpora of related works that empirically assess software performance.
To avoid second-guessing, we only report such data for studies explicitly providing information
about the number of subject projects and benchmarks.

To the best of our knowledge, the magnitude of our study is on par with, if not larger than,
previous works empirically analyzing changes in performance caused by source code changes.

5.2 On the Impact of Refactoring on Code Quality Attributes

In recent years, many researchers have focused on how refactorings might impact the quality of
software projects.

18Pharo project, http://pharo.org.
19Cassandra, https://cassandra.apache.org/.
20Hadoop, https://hadoop.apache.org/.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

http://pharo.org
https://cassandra.apache.org/
https://hadoop.apache.org/

25:20 L. Traini et al.

Table 3. Comparison among Corpora Sizes

Reference Projects Benchmarks

Sandoval et al. [36–38] 19 1,125

Laaber et al. [24] 10 2,164

Chen et al. [7] 8 1,268

Reichelt et al. [33] 9 105

Our study 20 1,598

Moser et al. [30] conducted a case study on a project developed in an agile and close-to-industrial
environment. The authors examined the code quality change after refactorings, with complexity
and coupling metrics. They found that refactorings lead to simpler and less coupled code.

Szőke et al. [41] analyzed five software systems and measured the quality change over refactor-
ings with a probabilistic quality model. With the 200 identified refactoring commits, the authors
found that while single refactoring does not necessarily increase the software quality, its increase
in local components and globally can be more evident when refactorings are applied in blocks.

Tavares et al. [42] applied 80 refactorings automatically generated by JDeodorant on seven open-
source Java systems and investigated how refactoring impacts code smells. Their results indicate
that while some code smells can be eliminated by refactoring as expected, there are also cases in
which refactorings introduce new bad smells.

Abid et al. [1] examined the impact of refactorings on both security and other quality attributes
(i.e., reusability, flexibility, understandability, functionality, extendibility, and effectiveness). By an-
alyzing 30 open-source software projects, they found that while refactorings help to improve other
quality attributes, the software tends to become less secure. This negative correlation needs to be
taken into account before refactoring software systems.

Lin et al. [26] inspected 1,448 refactoring operations from 619 Java projects to understand
whether refactorings lead to more natural code, namely whether the source code becomes more
repetitive and predictable. Their results indicate that this assumption does not always hold, and
the impact on the code naturalness varies among different types of refactorings.

Sahin et al. [35] conducted an empirical study, involving 197 applications of six commonly used
refactorings, to investigate how refactorings affect the energy usage. Their results show that all
the considered refactorings in the study can potentially impact the energy consumption, with a
magnitude ranging from −4.6% to 7.5%. Verdecchia et al. [47] also looked into the same topic.
They applied automatic refactoring on five different types of code smells in three open-source
Java projects and collected energy consumption in a controlled environment. As a result, they
found that in one project, refactoring significantly impacted the energy consumption.

To the best of our knowledge, not many studies have investigated the impact of refactoring
operations on the performance of software systems. The most relevant work to ours is the study
conducted by Demeyer [11], which inspected how a specific type of refactoring (i.e., replacing con-
ditionals by virtual function calls) impacts the performance of C++ programs. Their results show
that this type of refactoring often leads to faster performance compared to their non-refactored
counterparts. While this study is highly relevant to software performance, it only focuses on a
specific type of refactoring operation.

6 CONCLUSION

We presented an empirical study aimed at investigating the impact of refactoring operations on ex-
ecution time. To the best of our knowledge, this is the first work analyzing a wide set of refactoring
types from the “performance perspective.” As for any performance-related study, the collection of

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

How Software Refactoring Impacts Execution Time 25:21

the data needed to answer our research questions posed major challenges and required hundreds
of machine days.

The achieved results show that the impact of refactoring on execution time varies depending
on the refactoring type, with none of them being 100% “safe” in ensuring that there is no perfor-
mance regression. Some refactoring types, such as Extract Class and Extract Method, can result in
substantial performance regression and, as such, should be carefully considered when refactoring
performance-critical parts of a system. It is important to highlight that, due to the expensive data
collection process behind our study, such results are based on a limited number of data points (e.g.,
a total of 82 commits from 20 projects). Additional investigations are needed to strengthen the
generalizability of our findings. Still, our work discloses the potential side effects of refactoring
on execution time and has implications for both practitioners and researchers. For the former, it is
important to be aware of the possible performance regressions caused by refactoring operations.
The recommendation here is not to avoid refactoring performance-critical code but to properly
handle it. First, developers should ensure that the code target of the refactoring is properly cov-
ered by performance benchmarks. In this way “performance regression testing” can be performed
after refactoring to assess if and how much the implemented changes degraded performance. Sec-
ond, assuming that a cost is observed in terms of performance, a non-trivial cost-benefit analysis
must be run to decide whether to revert the refactoring. For example, if the refactored code is well
known to cause maintainability issues (e.g., it is difficult to comprehend, leading to frequent bug in-
troduction), developers may accept some performance regression to improve code maintainability.
On the researchers’ side, we envision research aimed at designing (1) approaches to predict the im-
pact on performance of planned refactoring operations before they are actually implemented in the
system and (2) sensible refactoring recommender systems able to consider tradeoffs between mul-
tiple non-functional requirements when making recommendations. Our future agenda is driven
by these two research directions.

REFERENCES

[1] C. Abid, M. Kessentini, V. Alizadeh, M. Dhouadi, and R. Kazman. 2020. How does refactoring impact security when

improving quality? A security-aware refactoring approach. IEEE Transactions on Software Engineering (2020), 1–1.

https://doi.org/10.1109/TSE.2020.3005995

[2] Davide Arcelli, Vittorio Cortellessa, Daniele Di Pompeo, Romina Eramo, and Michele Tucci. 2019. Exploiting architec-

ture/runtime model-driven traceability for performance improvement. In IEEE International Conference on Software

Architecture (ICSA’19). IEEE, 81–90. https://doi.org/10.1109/ICSA.2019.00017

[3] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. 2014. Recommending refactoring operations

in large software systems. In Recommendation Systems in Software Engineering. Springer, 387–419. https://doi.org/10.

1007/978-3-642-45135-5_15

[4] Gabriele Bavota, Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lucia. 2014. Methodbook: Rec-

ommending move method refactorings via relational topic models. IEEE Transactions on Software Engineering (TSE)

40, 7 (2014), 671–694.

[5] Lubomír Bulej, Vojtěch Horký, Petr Tuma, François Farquet, and Aleksandar Prokopec. 2020. Duet benchmarking:

Improving measurement accuracy in the cloud. In Proceedings of the ACM/SPEC International Conference on Perfor-

mance Engineering (ICPE’20). Association for Computing Machinery, New York, NY, 100–107. https://doi.org/10.1145/

3358960.3379132

[6] Oscar Chaparro, Gabriele Bavota, Andrian Marcus, and Massimiliano Di Penta. 2014. On the impact of refactoring

operations on code quality metrics. In 30th IEEE International Conference on Software Maintenance and Evolution.

456–460.

[7] Jie Chen, Dongjin Yu, Haiyang Hu, Zhongjin Li, and Hua Hu. 2019. Analyzing performance-aware code changes in

software development process. In Proceedings of the 27th International Conference on Program Comprehension (ICPC’19),

Yann-Gaël Guéhéneuc, Foutse Khomh, and Federica Sarro (Eds.). IEEE/ACM, 300–310. https://doi.org/10.1109/ICPC.

2019.00049

[8] Michael L. Collard, Michael J. Decker, and Jonathan I. Maletic. 2011. Lightweight transformation and fact extraction

with the srcML toolkit. In 2011 IEEE 11th International Working Conference on Source Code Analysis and Manipulation.

IEEE, 173–184.

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

https://doi.org/10.1109/TSE.2020.3005995
https://doi.org/10.1109/ICSA.2019.00017
https://doi.org/10.1007/978-3-642-45135-5_15
https://doi.org/10.1145/3358960.3379132
https://doi.org/10.1109/ICPC.2019.00049

25:22 L. Traini et al.

[9] David Daly, William Brown, Henrik Ingo, Jim O’Leary, and David Bradford. 2020. The use of change point detection

to identify software performance regressions in a continuous integration system. In Proceedings of the ACM/SPEC

International Conference on Performance Engineering (ICPE’20). Association for Computing Machinery, New York, NY,

67–75. https://doi.org/10.1145/3358960.3375791

[10] A. C. Davison and D. V. Hinkley. 1997. Bootstrap Methods and their Application. Cambridge University Press. https:

//doi.org/10.1017/CBO9780511802843

[11] S. Demeyer. 2005. Refactor conditionals into polymorphism: What’s the performance cost of introducing virtual calls?

In 21st IEEE International Conference on Software Maintenance (ICSM’05). 627–630.

[12] Zishuo Ding, Jinfu Chen, and Weiyi Shang. 2020. Towards the use of the readily available tests from the release

pipeline as performance tests: Are we there yet? In 42nd International Conference on Software Engineering (ICSE’20),

Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1435–1446. https://doi.org/10.1145/3377811.3380351

[13] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically rigorous Java performance evaluation. In Pro-

ceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Ap-

plications (OOPSLA’07). Association for Computing Machinery, New York, NY, 57–76. https://doi.org/10.1145/1297027.

1297033

[14] Andy Georges, Lieven Eeckhout, and Dries Buytaert. 2008. Java performance evaluation through rigorous replay

compilation. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems Languages

and Applications (OOPSLA’08). Association for Computing Machinery, New York, NY, 367–384. https://doi.org/10.1145/

1449764.1449794

[15] Holger Giese, Leen Lambers, and Christian Zöllner. 2020. From classic to agile: Experiences from more than a decade of

project-based modeling education. In ACM/IEEE 23rd International Conference on Model Driven Engineering Languages

and Systems (MODELs’20), Virtual Event, Companion Proceedings, Esther Guerra and Ludovico Iovino (Eds.). ACM,

22:1–22:10. https://doi.org/10.1145/3417990.3418743

[16] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie. 2012. Performance debugging in the large via

mining millions of stack traces. In 2012 34th International Conference on Software Engineering (ICSE’12). 145–155. https:

//doi.org/10.1109/ICSE.2012.6227198 ZSCC: 0000165 ISSN: 1558-1225.

[17] K. Herzig and A. Zeller. 2013. The impact of tangled code changes. In 2013 10th Working Conference on Mining Software

Repositories (MSR’13). 121–130.

[18] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012. Understanding and detecting real-world

performance bugs. SIGPLAN Notices 47, 6 (June 2012), 77–88. https://doi.org/10.1145/2345156.2254075

[19] Tomas Kalibera and Richard Jones. 2013. Rigorous benchmarking in reasonable time. In Proceedings of the 2013 Inter-

national Symposium on Memory Management (ISMM’13). Association for Computing Machinery, New York, NY, 63–74.

https://doi.org/10.1145/2491894.2464160

[20] Tomas Kalibera and Richard Jones. 2020. Quantifying Performance Changes with Effect Size Confidence Intervals.

(2020). arXiv:stat.ME/2007.10899.

[21] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. 2012. An exploratory study of

the impact of antipatterns on class change- and fault-proneness. Empirical Software Engineering 17, 3 (2012), 243–275.

[22] Christoph Laaber and Philipp Leitner. 2018. An evaluation of open-source software microbenchmark suites for con-

tinuous performance assessment. In Proceedings of the 15th International Conference on Mining Software Repositories

(MSR’18). Association for Computing Machinery, New York, NY, 119–130. https://doi.org/10.1145/3196398.3196407

[23] Christoph Laaber, Joel Scheuner, and Philipp Leitner. 2019. Software microbenchmarking in the cloud. How bad is it

really? Empirical Software Engineering 24, 4 (Aug. 2019), 2469–2508. https://doi.org/10.1007/s10664-019-09681-1

[24] Christoph Laaber, Stefan Würsten, Harald C. Gall, and Philipp Leitner. 2020. Dynamically reconfiguring software

microbenchmarks: Reducing execution time without sacrificing result quality. In 28th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’20), Virtual Event, Prem

Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 989–1001. https://doi.org/10.1145/3368089.3409683

[25] Philipp Leitner and Cor-Paul Bezemer. 2017. An exploratory study of the state of practice of performance testing

in Java-based open source projects. In Proceedings of the 8th ACM/SPEC on International Conference on Performance

Engineering (ICPE’17). Association for Computing Machinery, New York, NY, 373–384. https://doi.org/10.1145/3030207.

3030213

[26] Bin Lin, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. On the impact of refactoring operations on code

naturalness. In Proceedings of the IEEE 26th International Conference on Software Analysis, Evolution and Reengineering

(SANER’19). IEEE, 594–598.

[27] Qi Luo, Aswathy Nair, Mark Grechanik, and Denys Poshyvanyk. 2017. FOREPOST: Finding performance problems

automatically with feedback-directed learning software testing. Empirical Software Engineering 22, 1 (2017), 6–56.

https://doi.org/10.1007/s10664-015-9413-5

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

https://doi.org/10.1145/3358960.3375791
https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1145/3377811.3380351
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/1449764.1449794
https://doi.org/10.1145/3417990.3418743
https://doi.org/10.1109/ICSE.2012.6227198
https://doi.org/10.1145/2345156.2254075
https://doi.org/10.1145/2491894.2464160
https://doi.org/10.1145/3196398.3196407
https://doi.org/10.1007/s10664-019-09681-1
https://doi.org/10.1145/3368089.3409683
https://doi.org/10.1145/3030207.3030213
https://doi.org/10.1007/s10664-015-9413-5

How Software Refactoring Impacts Execution Time 25:23

[28] Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu, Slim Bechikh, Kalyanmoy Deb, and Ali Ouni.

2015. Many-objective software remodularization using NSGA-III. ACM Transactions on Software Engineering and

Methodology (TOSEM) 24, 3 (May 2015), 17:1–17:45.

[29] Rodrigo Morales, Rubén Saborido, Foutse Khomh, Francisco Chicano, and Giuliano Antoniol. 2018. EARMO: An

energy-aware refactoring approach for mobile apps. In Proceedings of the 40th International Conference on Software

Engineering (ICSE’18). 59.

[30] Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, and Giancarlo Succi. 2007. A case study on

the impact of refactoring on quality and productivity in an agile team. In Proceedings of the 2nd IFIP Central and East

European Conference on Software Engineering Techniques (CEE-SET’07). Springer, 252–266.

[31] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2009. Producing wrong data without doing

anything obviously wrong! SIGPLAN Notices 44, 3 (March 2009), 265–276. https://doi.org/10.1145/1508284.1508275

[32] Scott Oaks. 2014. Java Performance: The Definitive Guide (1st ed.). O’Reilly Media, Inc.

[33] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring. 2019. PeASS: A tool for identifying performance

changes at code level. In 34th IEEE/ACM International Conference on Automated Software Engineering (ASE’19). IEEE,

1146–1149. https://doi.org/10.1109/ASE.2019.00123

[34] Shiquan Ren, Hong Lai, Wenjing Tong, Mostafa Aminzadeh, Xuezhang Hou, and Shenghan Lai. 2010. Nonparamet-

ric bootstrapping for hierarchical data. Journal of Applied Statistics 37, 9 (2010), 1487–1498. https://doi.org/10.1080/

02664760903046102 arXiv:https://doi.org/10.1080/02664760903046102

[35] Cagri Sahin, Lori Pollock, and James Clause. 2014. How do code refactorings affect energy usage? In Proceedings of

the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM’14). Article 36,

36:1–36:10 pages.

[36] Juan Pablo Sandoval Alcocer, Fabian Beck, and Alexandre Bergel. 2019. Performance evolution matrix: Visualizing

performance variations along software versions. In 2019 Working Conference on Software Visualization (VISSOFT’19).

1–11. https://doi.org/10.1109/VISSOFT.2019.00009 ZSCC: 0000001.

[37] Juan Pablo Sandoval Alcocer and Alexandre Bergel. 2015. Tracking down performance variation against source code

evolution. ACM SIGPLAN Notices 51, 2 (2015), 129–139. https://doi.org/10.1145/2936313.2816718 Number: 2 ZSCC:

0000013.

[38] Juan Pablo Sandoval Alcocer, Alexandre Bergel, and Marco Tulio Valente. Learning from source code history to iden-

tify performance failures. In Proceedings of the 7th ACM/SPEC on International Conference on Performance Engineering

(ICPE’16). Association for Computing Machinery, 37–48. https://doi.org/10.1145/2851553.2851571 ZSCC: 0000024.

[39] David J. Sheskin. 2007. Handbook of Parametric and Nonparametric Statistical Procedures (4th ed.). Chapman &

Hall/CRC.

[40] Petr Stefan, Vojtech Horky, Lubomir Bulej, and Petr Tuma. 2017. Unit testing performance in java projects: Are we

there yet? In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering (ICPE’17). As-

sociation for Computing Machinery, New York, NY, 401–412. https://doi.org/10.1145/3030207.3030226

[41] Gábor Szóke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy. 2014. Bulk fixing coding issues and its

effects on software quality: Is it worth refactoring? In Proceedings of the 14th International Working Conference on

Source Code Analysis and Manipulation (SCAM’14). IEEE, 95–104.

[42] Cleiton Tavares, Mariza A. S. Bigonha, and Eduardo Figueiredo. 2020. Quantifying the effects of refactorings on bad

smells. In Proceedings of the XXXIV Brazilian Symposium on Software Engineering (SBES’20).

[43] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. 2018. Synthesizing programs that expose performance bottle-

necks. In Proceedings of the 2018 International Symposium on Code Generation and Optimization (CGO’18). Association

for Computing Machinery, New York, NY, 314–326. https://doi.org/10.1145/3168830

[44] Luca Traini, Daniele Di Pompeo, Michele Tucci, Bin Lin, Simone Scalabrino, Gabriele Bavota, Michele Lanza, Rocco

Oliveto, and Vittorio Cortellessa. 2020. How Software Refactoring Impacts Execution Time - Replication Package.

https://github.com/SEALABQualityGroup/replicationpackage_refperf.

[45] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2009. Identification of move method refactoring opportunities. IEEE

Transactions on Software Engineering (TSE) 35, 3 (2009), 347–367.

[46] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2020. RefactoringMiner 2.0. IEEE Transactions on Software Engi-

neering (2020), 21. https://doi.org/10.1109/TSE.2020.3007722

[47] Roberto Verdecchia, René Aparicio Saez, Giuseppe Procaccianti, and Patricia Lago. 2018. Empirical evaluation of the

energy impact of refactoring code smells. In Proceedings of the 5th International Conference on Information and Com-

munication Technology for Sustainability (ICT4S’18) (EPiC Series in Computing), Vol. 52. 365–383.

Received December 2020; revised June 2021; accepted August 2021

ACM Transactions on Software Engineering and Methodology, Vol. 31, No. 2, Article 25. Pub. date: December 2021.

https://doi.org/10.1145/1508284.1508275
https://doi.org/10.1109/ASE.2019.00123
https://doi.org/10.1080/02664760903046102
https://doi.org/10.1080/02664760903046102
https://doi.org/10.1109/VISSOFT.2019.00009
https://doi.org/10.1145/2936313.2816718
https://doi.org/10.1145/2851553.2851571
https://doi.org/10.1145/3030207.3030226
https://doi.org/10.1145/3168830
https://github.com/SEALABQualityGroup/replicationpackage_refperf
https://doi.org/10.1109/TSE.2020.3007722

