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Search-based techniques have been successfully used to automate test case generation. Such approaches allo-

cate a fixed search budget to generate test cases aiming at maximizing code coverage. The search budget plays

a crucial role; due to the hugeness of the search space, the higher the assigned budget, the higher the expected

coverage. Code components have different structural properties that may affect the ability of search-based

techniques to achieve a high coverage level. Thus, allocating a fixed search budget for all the components

is not recommended and a component-specific search budget should be preferred. However, deciding the

budget to assign to a given component is not a trivial task.

In this article, we introduce Budget Optimization for Testing (BOT), an approach to adaptively allocate

the search budget to the classes under test. BOT requires information about the branch coverage that will be

achieved on each class with a given search budget. Therefore, we also introduce BRANCHOS, an approach

that predicts coverage in a budget-aware way. The results of our experiments show that (i) BRANCHOS can

approximate the branch coverage in time with a low error, and (ii) BOT can significantly increase the coverage

achieved by a test generation tool and the effectiveness of generated tests.
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1 INTRODUCTION

Automatic test case generation tools (TGTs) are designed to derive test cases for a given software
project, and can reduce the time allocated for unit testing. Many TGTs have been defined in the
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literature [10, 13, 18, 19, 21, 27], most of them based on search-based techniques [11, 23, 24]. Ran-
doop [21] and EvoSuite [10] are two well-known examples of such tools, based on random search
(Randoop) and genetic algorithms (EvoSuite). These tools take as input a set of components (e.g.,
classes) to be tested and a search budget, namely, the time that can be spent searching for a (near-)
optimal solution that maximizes code coverage. The search budget plays a fundamental role since
automatic test case generation is a time-consuming activity due to the hugeness of the search
space. In general, the higher the assigned search budget, the higher the expected code coverage.

State-of-the-art tools allow one to specify a global search budget, meaning the overall time that
the search-based approach will invest in the coverage of all targets (e.g., all the branches of the
classes under test). However, intuitively, some classes are easier to cover than others. For example, a
class implementing a Java parser is likely to exhibit a high code complexity, with branches dealing
with exceptional conditions that are unlikely to happen but that still need to be managed. The
automatic generation of test cases for such a class is clearly challenging, and could require a long
execution time before reaching a satisfactory coverage level. On the other hand, a simple Java bean
representing a data class and having little application logic is likely to require only a few seconds
in order to meet the coverage target. Thus, assuming the possibility to specify a local search budget
rather than a global one (i.e., assign a specific budget to each unit to test), the first class (i.e., the
parser) should probably be assigned with a higher search budget as compared to the second one
(i.e., the Java bean).

Such an intuition has been exploited by Campos et al. [5] when presenting the idea of Continu-
ous Test Generation (CTG), embedding automatic test case generation in the process of continuous
integration. CTG exploits historical data of the project under test to allocate a specific budget to
each of its classes. For example, if a classC has been modified in a commit, then its search budget
should be higher. Also, information about the coverage achieved on C in past runs of test case
generation is used to decide the search budget for a new version ofC . More in general, abstracting
from the CTG to the automatic generation of test cases, this problem can be referred to as Budget

Optimization Problem: given a set of classes and a global search budget, the aim is to divide the
budget to optimize the global coverage. While the approach by Campos et al. [5] is a clear step in
this direction, it can only be used when historical information is available. Indeed, there are many
cases in which projects do not have test suites or they only cover a small portion of the system:
Kochhar et al. [17] show that the majority of the open source projects they analyzed have test
suites achieving less than 25% coverage.

Ferrer et al. [9] proposed a metric—namely, Branch Coverage Expectation (BCE)—to assess how
difficult it is to generate test cases for a given class or method.

While the authors show that BCE correlates with branch coverage better than existing metrics,
its output cannot be directly used for predicting the coverage achieved by a test case generation
tool when run on a given component. Indeed, while BCE is a good proxy for the difficulty of
testing the code artifactC , it does not take into account the search budget assigned to the test case
generator for testing C .

In this article, we introduce BOT, an approach tackling the Budget Optimization Problem. Given
a set of classes to test, BOT uses a search-based algorithm to intelligently divide the global budget
among the classes. BOT requires a budget-aware estimation of the coverage achieved on a given
class. For this reason, we introduce BRANCHOS, an approach built on top of BCE that predicts the
branch coverage that a search-based test case generation technique will achieve on a class given a

specified search budget. Specifically, we define a set of structural metrics that we use as predictors
of branch coverage “in time”1 and we use machine learning to train a regressor. We evaluate both

1We use “in time” to refer to the ability of the approach to predict the coverage reached by an automatic test case generation

tool on a unit under test in a given time budget.
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BRANCHOS and BOT on 10,349 Java classes. Our results indicate that (i) BRANCHOS is able to
predict branch coverage significantly better than the considered baselines, and (ii) BOT can im-
prove the project-level branch coverage and the effectiveness of test suites created by automatic
test case generation techniques both in an ideal scenario (simulating a perfect branch prediction
approach) and in a realistic scenario (using BRANCHOS). For the latter one, however, the observed
improvement is quite limited, calling for more accurate branch prediction approaches.

BOT can be used on projects on which the total coverage is insufficient, in order to run test
case generation on the classes still not covered by test cases. In addition, BRANCHOS can also be
used in isolation, to decide the most adequate search budget to assign to a new class for which
automated test case generation will be executed.

2 RELATED WORK

In this section, we present an overview of the state of the art on automatic test case generation.
Then, we describe in detail the existing techniques for branch coverage prediction.

2.1 Search-Based Test Case Generation

Developers run unit tests to check the presence of faults in their code. However, manually writing
test cases is a time-consuming task. Researches theorized many different approaches for automatic
test case generation. While many approaches were introduced in the literature to achieve this goal
(e.g., [13, 29]), we focus mainly on search-based techniques.

In search-based software testing, the set of possible test cases for a given program is represented
as a search space, and the problem of defining test cases is solved using an optimization algorithm
[20] that allows one to select a solution maximizing some selected adequacy criteria. One criterion
commonly used is branch coverage, but other criteria, such as exception coverage or weak mu-
tation [25], have been targeted as well. Random search [15] is the simplest form of search-based
optimization algorithm: test cases are randomly selected from the search space and the most valu-
able ones according to the defined adequacy criteria are selected. Despite its simplicity, random
search is among the most effective approaches in many contexts [13, 28]. The main limitation of
random testing is the absence of guidance. For example, when targeting branch coverage, there
are cases in which the probability of randomly satisfying a given branch condition is very low:
a commonly used example is the condition a == b && b == c, with the integers a, b, and c
as inputs. For this reason, researchers experimented with more complex approaches to solve this
problem. Some approaches proposed in the literature use genetic algorithms (GAs) to evolve indi-
vidual test cases (e.g., single target approaches) [30], whole test suites [11, 26], or many test cases
in parallel [23, 24].

Single-target approaches evolve test cases to cover a single target at a time. Tonella [30] intro-
duced a chromosome representation to evolve test cases for classes in Object-Oriented code. Fraser
and Arcuri [11] used such a representation to define the first approach to evolve whole test suites
instead of single test cases.

Panichella et al. introduced two approaches to improve the whole test suite approach: MOSA
[24] and DynaMOSA [23], both using a many-objective algorithm to evolve test cases in parallel.

Some of the proposed approaches have been implemented in publicly available tools. The ones
mostly used for Java are two open source tools, i.e., Randoop [21] and EvoSuite [10]. Ran-
doop is based on feedback-directed random test case generation [22], while EvoSuite implements
many evolutionary strategies, but it also features random test case generation and Dynamic Sym-
bolic Execution [13, 28]. EvoSuite is also available as a plugin for Maven, Eclipse, and IntelliJ
IDEA.
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2.2 The Budget Problem in Search-Based Test Case Generation Tools

Despite providing a great support for generating test cases, the previously mentioned tools have
some limitations. First, they cannot automatically determine the expected behavior of code (i.e.,
the “oracle problem” [2]). Randoop and EvoSuite mitigate this issue by generating oracles that
reflect the current behavior of the system. Such a strategy results useful especially in the context of
regression testing. The other limitation of these tools is that they require developers to decide the
time they want the tool to spend searching for test cases for each unit to test. Randoop and Evo-
Suite offer features that allow one to set the budget at the project level, without taking into account
differences among the classes and the fact that some classes are naturally more difficult to test than
others. Randoop allows one to specify a global search budget that will be used for testing the whole
project: it generates tests for each class until the budget is over. When this happens, the tool sim-
ply stops, i.e., there may be classes left untested. In EvoSuite, the developer can specify a search
budget that will then be used for the test case generation of each class (e.g., 60 seconds per class).

To address this problem, Campos et al. [5] introduced a technique, implemented in EvoSuite,
that uses information about the coverage achieved on the classes in past runs of test case genera-
tion to intelligently decide the search budget for a new version of such a class. The main limitation
of this approach is that it requires information about the past coverage to work. For the first run
of EvoSuite on a previously unseen unit to test, they use an approach that proportionally divides
the search budget based on the number of branches of the classes.

Our work is motivated by the will of introducing an approach for intelligently splitting the
search budget assigned by the developer at project level among the classes in the case where no
previous coverage information is available. To achieve such a goal, a possible way is to predict the
branch coverage that will be achieved for a given search budget.

2.3 Prediction of Branch Coverage

Ferrer et al. [9] introduced BCE, a metric that predicts the coverage achieved by automatic test case
generation techniques on a given unit. BCE consists in modeling code as a Markov chain. Specifi-
cally, the authors first extract the Control Flow Graph (CFG) of a program, then they consider the
basic blocks of the CFG as the states of the Markov chain and its edges as possible transitions from
one state to another. The authors also add a transition from the states created from exit nodes of
the CFG to the initial state to simulate the behavior of test case generation techniques, that run
a program multiple times. Markov chains require a probability associated to each transition, with
the specific requirement that, for all the transitions Ba,i from the state Sa ,

∑
Ba,i = 1.

For all the states that have a single possible transition, the probability associated to such a
transition is 1. In all the other cases, the authors assign the probabilities to the branches Ba,b

using probabilistic rules based on the operators in the branching conditions. Table 1 shows how
probabilities are computed for a given logical expression in a condition. For equality/inequality
tests, the authors use q = 1

16 .
Given the Markov chain representing a program, the authors analytically compute, for each state

Si , its stationary probability πi , i.e., the probability of randomly traversing such a state. Using the
stationary probabilities, for each state Si they compute the frequency of appearance as E[Si ] =

πi

π1
.

Finally, the authors compute the expectation of traversing a branch Ba,b from Sa to Sb in a single
run using the formula E[Ba,b ] = E[Sa] Pr(Ba,b ). Given the set B∗ of the branches with branch
expectation lower than 1

2 , BCE is defined as the mean expectation of traversing such branches of
a program:

BCE =

∑
b ∈B∗ E[b]

|B∗ | .
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Table 1. Operator-Based Probabilities in BCE [9]:

The Probability is Purely Based on the Structure

of the Condition

Pr(a ∨ b) Pr(a) + Pr(b) − Pr(a) Pr(b)
Pr(a ∧ b) Pr(a) Pr(b)
Pr(¬a) 1 − Pr(a)
Pr(a > b) 0.5
Pr(a ≥ b) 0.5
Pr(a < b) 0.5
Pr(a ≤ b) 0.5
Pr(a = b) q
Pr(a � b) 1 − q

The main difference between BRANCHOS and BCE is that the latter is meant to predict the
absolute coverage achieved by test cases, while BRANCHOS is aimed at predicting the coverage
given a specific search budget (coverage in time).

3 ADAPTIVELY ASSIGNING THE SEARCH BUDGET

Consider a software project P , composed by n classes CS = {C1,C2, . . . ,Cn }, and a global search
budget, B, assigned by a developer to an automatic test case generation tool in order to test the
classes of P . It is possible to see the partitioning of B amongCS as an optimization problem (Budget

Optimization Problem). The constraint of such a problem is that the sum of the budgets bi assigned
to each class Ci should be equal to B. The objective is to maximize the total number of branches
covered in the system. The variables of the problem are the search budgets assigned to the classes,
i.e., b1, b2, . . . , bn . Formally, the objective function is defined as

max

n∑

i=1

BCovt (Ci ,bi ), (1)

where BCovt (Ci ,bi ) represents the total number of branches covered by a test case generation
tool t on a class Ci with bi as budget. BCovt (Ci ,bi ) ranges between 0 and Branches(Ci ), i.e., the
total number of branches inCi . BCovt (Ci ,bi ) can be also expressed as Covt (Ci ,bi ) × Branches(Ci ),
where Covt (Ci ,bi ) is a function that returns the percentage of branch coverage (which ranges
between 0 and 1), and Branches(Ci ) indicates the number of branches of the classCi . Even if more
convoluted, we will mainly use such a form in the rest of the article since it simplifies the solution
we will present later. Since Branches(Ci ) is fixed, the main problem in optimizing this function is
that Covt (Ci ,bi ) is unknown a priori, i.e., it is necessary to run t on Ci with bi budget to know
such a value.

We introduce Budget optimization for testing (BOT), an approach to solve the Budget Optimiza-

tion Problem. BOT uses a search-based algorithm to determine the search budget allocation that
will allow one to achieve the maximum coverage. To do this, it requires an estimation of the branch
coverage achieved on a class with a given budget (i.e.,Covt (Ci ,bi ) in the objective function). To es-
timate such a value, BOT uses BRANCHOS (BRANch Coverage HistOry Seer), a novel approach to
predict branch coverage “in time.” In this section, we first describe BRANCHOS and the predictors
we introduce to estimate branch coverage in time; then, we describe our search-based algorithm
that we use in BOT to optimize the budget allocation.
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3.1 BRANCHOS: Predicting Coverage in Time

The basic assumption behind BRANCHOS is that the coverage achieved by test case generation
approaches in time depends on features that can be measured on the classes under test. Under this
assumption, classes with similar features are likely to have similar coverage in time. Given a class
C for which we want to measure the expected coverage and a virtual search budget b, BRANCHOS
computes a set of metrics onC and uses such metrics and b as features of a regression model which
has a dependent variableCovp (C,b), i.e., the predicted coverage that can be achieved onC by using
b as search budget.

We use the following metrics to predict the coverage:

—Class Size: the size of a class is known to be negatively correlated with the coverage [8].
Intuitively, the higher the number of instructions to test, the longer the time needed to
cover all of them. Also, having more instructions increases the likelihood that an exception
occurs, making it harder to cover some instructions. For these reasons, we include the Class
Size as a feature in BRANCHOS. We measure the Class Size as the total number of bytecode
instructions in the class.

—Number of Branches: since BRANCHOS is defined to predict the branch coverage, we
hypothesize that the number of possible targets in a class is a relevant factor in determining
the coverage achieved in time. We measure the number of branches (#Branches) as the
number of conditional branching instructions and switch instructions at bytecode level.

—Number of Methods: like the previously outlined metrics, the number of methods (#Meth-
ods) may be an indicator of the complexity of the class. Specifically, it could be necessary
to call methods in a specific order to test some branches. Consider the class Stack: if on
an empty stack the method pop is invoked before a push operation is performed, the code
related to the deletion of the element from the top of the stack is not executed. The higher
#Methods, the higher the possible permutations of method executions to be tested.

—Number of Infinite-Domain Fields: while a high number of methods may indicate that
many different invocation sequences are possible, it does not provide information about
the possible states in which the class may be. The number of states of a class C may be
computed as States(C) =

∏
f ∈fields(C) |type(f ) |, where fields(C) is the set of fields in C and

|type( f ) | indicates the domain size of a type, i.e., the number of possible values it may
have. For example, an int variable can have 232 possible values. We compute the domain

size of a primitive type T as 2bytes(T ) , except for Boolean which only have domain size 2 by
definition. The domain size of array types is always virtually infinite in Java since the size
of arrays is decided when they are instantiated and it cannot be deduced from the static
type. Finally, we compute the domain size of non-primitive/array types (i.e., type defined
as classes) as States(C). Given our previous definition, it is very likely that any class has
a virtually infinite number of states since it is sufficient that it contains an array field or
even a String type, which contains array fields. Consider two classes, one with a String
field and one with 10 String fields: it is clear that the latter can have a larger number
of possible states than the former and it is more difficult to handle for a search-based test
case generation technique. For this reason, instead of counting the number of states that an
object of a given class can achieve, we count the number of infinite-size fields (#Fields).

—Number of Infinite-Domain Parameters: besides the order of invocation of methods,
the arguments passed to the methods are the main aspect that determines which branches
are covered. A high number of parameters may indicate that there are many different
variables affecting the code execution, and testing the interaction among all of them may
be more difficult [8]. Similarly to what we do for #Fields, we only take into account the
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infinite-domain parameters, i.e., the ones that mostly increase the number of combinations
to take into account. We measure the number of infinite-domain parameters (#Parameters)
of a class as the sum of the number of parameters of all the methods belonging to the class
under test.

—Number of Private Methods: in Java, test cases can only invoke public and protected
methods, but they cannot call any private method of the class under test: private methods
can only be used from inside the class. Therefore, the input of such methods cannot be
directly decided by the test case generation approach, that can only indirectly cover their
instructions through public methods implemented in the class. Thus, we also measure the
number of private methods (#PrMethods) of the class under test.

—Branch Coverage Expectation: we also use BCE, the metric introduced by Ferrer et al.
[9] detailed in Section 2. We compute BCE for all the methods in the class under test and
we consider the mean as a feature in BRANCHOS.

—Branch Switching Difficulty: branching conditions may have very different probabilities
of being evaluated as true or false. Since search-based test case generation is random at its
base, knowing such probabilities a priori would be of fundamental importance to predict
the coverage in time. The higher the absolute difference between such a probability and
0.5, the harder it would be to switch the truth value of that condition either to true or false.
We introduce PrEst, a technique for estimating the probability of satisfying a condition,
and we use such an estimation to compute the Branch Switching Difficulty (BSD). Given
a condition c and its estimated probability P (c ) (we detail how we estimate it in the next
paragraph), we compute BSD as |0.5 − P (c ) |. We compute aggregate BSD at class level using
two distinct metrics: we compute the maximum and the mean BSD of the conditions of all
the branching instructions in the class under test. The rationale for also using the maximum
here is to consider the most challenging condition as a feature of our model.

It is worth noting that we did not consider the Cyclomatic Complexity as a metric. We did this
because it is measured as a function of the number of branches, a metric we already consider.

Estimating the Probabilities of Conditions. Ferrer et al. [9] estimate the probabilities of
conditions using simple probabilistic properties, that uniquely depend on the binary operators used
in them. For example, they use 0.5 as fixed probability of satisfying all the conditions containing
the <=. Table 1 in Section 2 shows all the probabilities associated to the different comparison
operators (the authors use q = 1

16 ).
Such an approach suffers from two main problems. First, it does not take into account the nature

of the operands: if both a and b are parameters of the method, the probability of satisfying any
condition may differ from the case where a and b are constants or are not strictly dependent on the
user input (e.g., they represent a timestamp). The second problem is that this approach does not
take into account the context in which the condition is. Consider, for instance, the condition i <
list.size(). It is reasonable to assume that these types of conditions are more frequently satisfied
(i.e., true value) than they are not in practice. This happens because they are frequently used in
for loops, and in these cases the analytical probability of satisfying the condition is list.size

list.size+1 ,
which tends to be higher than 0.5.

We try to tackle these two problems defining PrEst, a context-aware approach for estimating the
probability of satisfying a condition. We achieve this goal by mining information about the cover-
age of conditions from other software projects in order to estimate more precisely the probabilities
of new conditions.

Consider the conditionCBI of a branch instruction BI . Without loss of generality, we can assume
that everyCBI appears in the formvi �vj , wherevi andvj are variables and � is a binary operator.
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Indeed, a branch instruction with a more complex condition can be broken into many branch
instructions in the binary form previously presented. This is what happens in low-level program
representations, like bytecode. Given this, we aim to determine the sequence of operations that
involvevi andvj and if their value depends, in some way, on parameters and/or instance variables.

To achieve this goal, we use a lightweight version of backward slicing [3]: we select all the
instructions that affect a given line (specifically, a condition); unlike backward slicing, we do not
necessarily want to construct a compilable program or a program that preserves the behavior of
the original one as for a specific variable. To define the sequence of instructions in which we are
interested, we create an empty stack O containing at the beginning only the comparison operator
� of CBI . We start from the variables vi and vj and we look for the instructions in which such
variables are assigned, respectively, Ii and Ij . If these instructions contain a method call or an
arithmetical operation, we push them on top of O . We keep doing this also for the variables used
in Ii and Ij , until we get to parameters, instance variables, or already analyzed variables (it may
happen in loops). At the end of this process, O contains the list of operations affecting data that
are used in the conditionCBI . We memorize whether instance variables and/or parameters are met
in this process. To remark on the difference with backward slicing, let us consider the example in
Listing 1: the backward slice of the target condition (line 7) includes the first if statement (line 2):
indeed, this is needed to preserve the original behavior of the program. On the other hand, we do
not consider such an instruction since num does not directly affect x, the variable we are analyzing.

Listing. 1. Example method for the computation of CS .

Therefore, at the end, we know (i) the sequence of operations O (i.e., the operations performed
from the beginning of the method to the branch instruction of which we want to know the prob-
ability), and (ii) if parameters and instance variables are involved in the computation. We call the
data structure containing such information condition signature (CS). We conjecture that condi-
tions that have similar condition signatures have similar probabilities of being satisfied. We call
a condition signature controllable if it depends on parameters and/or instance variables and not

controllable otherwise.
Given a datasetD of condition signatures associated with the probability of being satisfied using

a search-based approach, we define a method for determining the probability of a new condition
signature of being satisfied. We compute the context-aware probability Prc of satisfying a condition
C with a condition signature CS with the following formula:

Pr
c

(C,CS ) =
W Prs (C ) +

∑
Q ∈D Prc (Q )sim(CSC ,Q )

W +
∑

Q ∈D sim(CSC ,Q )
, (2)

where sim(CS1,CS2) → [0, 1] is a similarity function between condition signatures, Prs is the struc-
tural probability function defined by Ferrer et al. [9], andW is a parameter representing the weight
of the structural probability.

In other words, we compute the probability of satisfying a condition C as the weighted sum of
the probabilities of satisfying conditions with similar condition signatures, where the weights are
the similarities between CS and the other condition signatures in the dataset. We also add to this
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weighted sum the mean Prs (C ), the structural probability of satisfying C . We use a constant, W ,
as weight for Prs (C ). We introducedW to be able to tune the level of importance we should give
to Prs (C ) when combining it with the structural probability instead of assuming such two parts as
equally important. We also consider structural probabilities to handle the cases in which we find
conditions with condition signatures different from the ones in the dataset.

Indeed, if there is no condition signature with high similarity, the correction over the struc-
tural probability is very small; on the other hand, if the similarity is high, the correction is more
significant.

We define a similarity measure, simk (CS1,CS2), based on the length of the Longest Common
Subsequence (LCS) of CS1 and CS2. First, we compute the length of the LCS between CS1 and
CS2 (LLCS). Such a measure indicates how many operations appear in both the sequences in the
same order, even if one of the sequences contains more operations than the other one. Then,
we normalize LLCS on the length of the longest sequence between CS1 and CS2 and we raise
the resulting value to the power of k (the role of the k parameter is, as explained later, to penalize
the similarity of sequences sharing few operations):

simk (CS1,CS2) =
⎧⎪⎨
⎪
⎩

[
LLCS (CS1,CS2 )

max( |CS1 |, |CS2 |)) ]k , if cp (CS1,CS2)

0, otherwise,
(3)

where cp (CS1,CS2) is true only if the signatures are both controllable or both not controllable.
Consider the following example, in which we set k to 2:

CS1 = {Integer.parseInt, +, ∗, <}contr ,

CS2 = {Integer.parseInt, ∗, >}contr .

In this case, since both the sequences are controllable, the similarity is not 0 a priori. We first
computeLLCS , which is 2 in this case (i.e., Integer.parseInt, *). We divide theLLCS by the length
ofCS1 (the longest sequence), obtaining 0.5 as a result. Finally, we compute 0.52, and we have that
sim2 (CS1,CS2) = 0.25. It is worth noting that the higher k , the lower the similarity of sequences
sharing few operations. In our context, it is important to penalize (i.e., minimize) the similarity
of two sequences only sharing a few operations, to minimize their impact in the computation of
Prc (C ). We tune the parameters k andW in our study.

The similarity measure is instead set to 0 when one of the signatures is controllable and the
other one is not. In these cases, indeed, although the sequences of calls are identical, the truth
value of only one of the conditions can be changed by the search-based technique modifying the
value of a parameter and/or of an instance variable. Therefore, their satisfaction probabilities may
be unrelated.

It is worth noting that PrEst is computed statically: if there are alternative branches that assign
a given variable in different ways, we cannot know which one will be executed. In such cases,
we include in theCS the operations performed in all the alternative branches. Consider again the
example in Listing 1: the last condition may depend on the execution of either downcase or upcase.
We include in the CS both such operations. The resulting CS would be the following:

CSe = {String.downcase, String.upcase, String.equals}contr .

Such a CS never reflects an actual execution scenario: only one of the methods will be called for
a given call to the method test. However, if the dataset D contains a sequence that includes only
one of the methods, it will still have a high similarity with theCS built in the example: indeed, the
similarity measure we use, i.e., LLCS , considers also the cases in which there is a lack of one or
more elements in the sequence, but the order is the same.
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The last step to compute Prc (C ) is the creation of dataset D of condition signatures associated
with the probability of being satisfied using a search-based approach. We show how we built such
a dataset and how we estimate the parameters of PrEst in Section 4.

Training the Model. A requirement for BRANCHOS is a dataset Dcov containing information
about the coverage achieved in time for a set of classes. Such a dataset must contain triples 〈Ci ,bj ,
Cov (Ci ,bj )

∗〉, whereCi is the class under test, bj is the search budget consumed, andCov∗ (Ci ,bj ) is
the coverage achieved usingbj as search budget forCi . Then, we measure all the metrics previously
described (i.e., the independent variables of BRANCHOS) on all the classes in Dcov , defining a new
dataset, Df eat , containing tuples 〈Ci ,M1 (Ci ), ...,Mn (Ci )〉, where Mi are the metrics we use. The
training set used by BRANCHOS is T = Dcov + Df eat , where Dcov and Df eat are merged on the
class to which they belong. Note that a class Ci can appear in T multiple times, with the same
values for the metrics, but different budget (bj ) and, possibly, different coverage levels achieved
(Cov∗ (Ci ,bj )).

It is worth noting that BRANCHOS is designed to be independent on the search-based test case
generation technique used: if a different tool or a different technique is used, it would be sufficient
to build a new training set. In our experiments reported in Section 4 and Section 5, we experiment
it with a specific test case generation technique, i.e., MOSA.

3.2 Optimizing the Search Budget

We propose a search-based approach to optimize the budget allocation inspired by hill climbing.
A solution represents the budget that will be assigned to each class under test and the objective

function is an approximation of the one presented in Equation (1), in which we use the prediction
provided by BRANCHOS as a proxy forCovt (Ci ,bi ), i.e., the coverage that will be achieved on the
class Ci using search budget bi .

Algorithm 1 shows our optimization algorithm. It requires three parameters: (i) the list of classes
C; (ii) the initial solution S , which is an array of the same length ofC and indicates the budget as-
signed to each of them; and (iii) the maximum number of iterations maxIter . At each iteration,
we first determine, for each class, which budget increment would allow it to have the most cost-
effective coverage improvement (i.e., the highest improvement at the lowest budget cost). We de-
termine such a budget cost ϵi for each class. To compute the cost-effectiveness, we simply divide
the coverage gain by the cost. For example, let us assume the following scenario: there is a classCi

with 60 seconds of budget that has a predicted coverage of 20 branches; adding 5 seconds would re-
sult in an increase of 5 branches (25 covered branches), while adding 10 seconds would result in an
increase of 7 branches (27 covered branches). In this case, we set ϵi = 5 since its cost-effectiveness
is higher ( 5

5 >
7
10 ).

At this point, for each class Ci , we have (i) a ϵi , which indicates the best budget increment,
(ii) a coverage increment BCov (Ci , Si + ϵi ) − BCov (Ci , Si ), and (iii) the cost-effectiveness of such

a change, computed as
BCov∗

t
(Ci ,Si+ϵi )−BCov∗

t
(Ci ,Si )

ϵi

. We pick the class for which it is possible to

achieve the most cost-effective budget increment, and we call it Ch . Then, we search for the class
Cl for which decrementing the budget by ϵh , i.e., the budget required byCh , allows one to minimize
the coverage loss. Finally, we try to increment the total coverage by removing ϵh from the budget
ofCl and assigning it toCh : if such an operation increments the total coverage, we move the budget
and we repeat the procedure, otherwise we stop. The algorithm stops anyway when the maximum
number of iterations is reached.

To determine the initial solution S for BOT, we divide the budget proportionally to the number
of branches of the classes, i.e., we use the “Budget” approach defined by [5].
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ALGORITHM 1: BOT algorithm.

Data: C , S , maxIter
Result : S

iter ← 0

while iter ≤ maxIter do

for i ∈ {0, . . . , |C |} do � Determine the best budget increase ϵ for each class

ϵi ← max argϵ
BCov∗

t
(Ci ,Si+ϵ )−BCov∗

t
(Ci ,Si )

ϵ
end for

h ← max argn
i=1

BCov∗
t

(Ci ,Si+ϵi )−BCov∗
t

(Ci ,Si )
ϵi

� Class with the highest gain given its ϵi

l ← min argn
i=1 BCov

∗
t (Ci , Si ) − BCov∗t (Ci , Si − ϵh ) � Class with the lowest loss given ϵh

Q ← S � Create a test solution Q by copying the current solution

Qh ← Qh + ϵh � Try to increase the budget for the class that would get the maximum gain

Ql ← Ql − ϵh � Try to reduce the budget for the class that would have the minimum loss

if
∑
Qi ≤

∑
Si then

return S � If the coverage of the test solution did not increase, stop

else

S ← Q � If the coverage increased, the test solution Q becomes the current solution

end if

iter ← iter + 1

end while

We preferred to use a local-search technique because it is more natural for the budget-
optimization problem: such a problem has a constraint, i.e., the budget used should be equal to
the total budget allocated at project level. This can be easily achieved with a local-search tech-
nique: as we showed, all the operations performed at each step do not modify the total budget by
design. On the other hand, using a genetic algorithm to achieve the same goal would be more prob-
lematic: it would be necessary to define a chromosome representation ensuring that all possible
chromosomes are valid solutions. For example, a trivial solution would be to represent a solution
as an array of integers, where the number at position i represents the budget to assign to the
i-th class. However, most of the solutions obtainable with this chromosome would not meet the
constraint (e.g., 〈60, 100, 100〉 would not be a valid solution if the total budget is 180).

4 EMPIRICAL STUDY DESIGN

The goal of this study is to investigate whether (i) BRANCHOS is able to predict branch coverage
in time and (ii) using BOT it is possible to find a budget allocation that allows one to improve
the project-level branch coverage. The context consists of 10,349 Java classes from 10 popular Java
software systems, while EvoSuite is used as a representative instance of search-based unit testing
tools.

Our study is steered by the following research questions:

—RQ1: What is the coverage prediction accuracy of BRANCHOS when varying the search budget?

With this research question, we want to understand what is the branch coverage prediction
accuracy of BRANCHOS for different search budgets.

—RQ2: Is BOT able to improve the effectiveness of search-based unit testing tools in its ideal form?

We study whether using BOT with an ideal prediction approach it is possible to improve
the branch coverage and the effectiveness at project level.

—RQ3: Is BOT able to improve the effectiveness of search-based unit testing tools when used with

BRANCHOS? We study whether using BOT with BRANCHOS it is possible to improve the
branch coverage and the effectiveness at project level.
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Table 2. Context of the Study: For Each Project We Report Both the Total

Number of Classes and the Number of Classes Considered in Our Study

Project Total classes Classes considered
T

u
n

in
g

commons-io 123 100
commons-lang 132 100
guava 1,865 100
mockito-all 752 100
jackson-databind 786 100

R
Q

1
−3

Netweaver 210 185
Squirrel SQL 1,582 894
SweetHome 3D 452 159
Vuze 3,949 1,948
Freemind 851 411
Checkstyle 219 134
Weka 1,466 851
Liferay 8,616 5,353
PDFsam∗ 406 338
Firebird 364 197
Total 21,773 10,970

4.1 Parameters Tuning

Before discussing how we answered our research questions, we detail the context and the proce-
dure used to tune (i) the k andW parameters of the novel metric PrEst used as coverage predictor
by BRANCHOS. The results of the tuning will be presented at the beginning of the section dis-
cussing the achieved results. The best parameters will be used to answer our research questions.

Tuning of PrEst. Such a tuning was run on five projects. We selected the five most popular
libraries in Maven by excluding those that are used by EvoSuite itself (e.g., junit). Indeed, the
version of EvoSuite we used does not work when used to generate test cases for projects it de-
pends upon. This process resulted in the selection of the five projects listed in the top part of
Table 2. From each of these projects, we extracted the 100 classes having the highest number of
conditional branches and run on them a modified version of EvoSuite that stores the number
of times each branch condition was evaluated both as true and false. We used a search budget of
120 seconds per class. In this context, multiple runs are not necessary, because conditions are al-
ready evaluated multiple times in a single run. We used the empirically recorded frequencies to
estimate the probabilities associated with each branch condition. The instances of our dataset are
composed by the branching instructions and the probability to evaluate their conditions as true. In
total, such a dataset is composed by 2,588 pairs 〈branchinginstructions, probability〉. Note that we
preferred to focus only on the 100 classes having the highest number of conditional branches in
each project for two reasons: (i) we wanted to balance in our dataset the data points extracted from
the subject systems, since the five projects have substantially different size (i.e., from 123 to 1,865
classes); (ii) given the first condition and the fact that the cost of running EvoSuite on each class
is the same (i.e., 120 seconds), we preferred to consider the 100 classes having the highest number
of conditional branches in order to maximize the number of collected pairs for our dataset.

Once the dataset is built, we tune the parameters required by BRANCHOS comparing the mean
squared error achieved by different versions of it. We evaluated BRANCHOS by varying k from
1 to 10 at steps of 1 and W from 0 to 10 at steps of 1, for a total of 110 〈k,W 〉 combinations. We
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choose the parameters k and W that allow us to achieve the lowest mean squared error. Given a
branch condition c , its actual probability empirically assessed Pr∗ (c ), and its predicted probability,
Pr(c ), we compute the squared error as e2

c = (Pr(c ) − Pr∗ (c ))2 and the mean squared error as the
mean of e2

c for all the branch conditions extracted from our dataset.

Tuning of the Search Algorithms. BOT does not rely on any parameter. However, as previ-
ously stated, the initial solution that is optimized by such an algorithm is based on the “Budget”
approach defined by Campos et al. [5], which allocates the budget based on the number of branches
of the classes under test. Such an approach requires one to specify the minimum budget that should
be allocated for each class. The authors use a 1 minute budget in a context in which the global bud-
get for each project is 3 minutes times the number of classes. Since our global budget is 1 minute
times the number of classes, we needed to use a different parameter, otherwise we would have had
the same results of a fixed budget allocation approach. To set such a parameter, we used one of the
10 projects of our dataset (i.e., PDFSam). We tried different values for the minimum allocation bud-
get ranging between 5 and 55, with a step of 5. We chose the value that allows one to achieve the
highest number of actual covered branches for the “Budget” approach alone (i.e., without running
BOT): we did this since we use “Budget” as a baseline and we want to perform a fair comparison
with it, i.e., we did not want to choose a value that favors the optimization step.

4.2 Context of the Study

To answer our research questions, we use the 10 systems reported in the bottom part of Table 2.
We used the 10 most popular Java software systems from the SF110 dataset [12].

While all 10 systems have been used to answer RQ1, 9 were used for RQ2 and RQ3 (i.e., all
but PDFsam, that was used for the tuning of the search algorithms). We took into account all the
classes belonging to the main JARs of such software systems, excluding those that could not be
tested (anonymous classes, interfaces, and abstract classes). In total, our study context consists of
10,349 classes.

To build a dataset that we could use to answer RQ1, RQ2, and RQ3, we recorded the coverage
achieved by EvoSuite during each second of execution on all classes of our subject system. We
used MOSA [24] as a test case generation approach, which is the one with the best performance
available in EvoSuite. We did not use DynaMOSA [23], the evolution of MOSA, because such an
approach was not implemented in the latest release of EvoSuite at the time of the experiment. We
set the search budget at 300 seconds per class. In total, our Dcov dataset is composed by 3,104,700
instances. To take into account the randomness of the test generation process, we run EvoSuite
five times for each class.

It is worth noticing that generating test cases for all the classes of our study and with such a
large search budget per class is very expensive. About 13 days of computation were needed to
acquire all the data running six parallel instances of EvoSuite on a dedicated virtual machine
with eight cores and 16 GB of RAM. For this reason, we preferred to generate test cases for more
classes rather than performing more than five runs for the same classes. We discuss this threat in
Section 6.

4.3 Experiment Methodology

To answer RQ1, as a preliminary step we compute the mean coverage achieved for each search
budget and class among the five EvoSuite runs. Then, we perform a cross-project validation,
i.e., we train the model on nine projects and we test it on the 10th one, using one project at a
time as test set, to compute the coverage as predicted by BRANCHOS (RQ1). Such a strategy was
selected to avoid training the model on classes of the system on which we will then predict the
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coverage. We choose Random Forest [4] as regression technique since it performed better than
other techniques in our preliminary tests. Since BRANCHOS is the first approach designed to
predict branch coverage in time, we do not have an actual baseline.

BCE cannot be used for this purpose either, since it cannot take the search budget as input. For
this reason, we use a trivial approach as baseline: we define several constant regressors CPb , one
for each possible search budget b we considered in our study. With constant regressor, we mean a
regressor that always predicts the same value, without taking into account the characteristics of
the input class. The constant regressorCPb (C ) always returns the mean branch coverage achieved
on all the classes in the training set in exactly b seconds, regardless of the input classC . Therefore,
given any class C and a search budget b, the baseline returns CPb (C ). Since we run EvoSuite for
300 seconds, the baseline approach contains 300 CPb , with b ∈ {1, . . . , 300}. Also in this case, we
use the mean squared error to compare the two approaches. Given a classC and a search budget b,
we have the actual coverage, Cov∗ (C,b), and the predicted coverage, Cov (C,b). We compute the
error as eC = |Cov (C,b) −Cov∗ (C,b) |.

We use a Wilcoxon signed-rank test on the squared errors of the models to compare them. Our
null hypothesis is that “there is no difference between the errors introduced by the models.” We reject
the null hypothesis, and thus we consider the difference significant, if the p-value of the test is
lower than 0.05.

We also measure the effect size, using the Cliff’s delta [6], to understand the magnitude of dif-
ference among the models. Cliff’s delta δ lays in the interval [−1, 1]: the effect size is negligi-

ble for |δ | < 0.148, small for 0.148 ≤ |δ | < 0.33, medium for 0.33 ≤ |δ | < 0.474, and large for
|δ | ≥ 0.474. If δ > 0, it means that the first distribution (in our case, always the distribution rep-
resenting the results achieved by our approach) is larger than the second (the baseline), while the
opposite happens otherwise. Finally, we also report two additional measures: (i) the Pearson corre-
lation between the predicted values and the actual values: this measure indicates if a higher actual
value results in a higher predicted value; and (ii) PRED(25), a metric which indicates how many
predictions have a relative error lower than 25%. Given the actual and the predicted vectors, p∗

and p, we compute PRED(25) as

PRED (25) =
n∑

i

⎧⎪⎨
⎪
⎩

1
n
, for

|pi−p∗
i
|

p∗
i

≤ 0.25

0, otherwise.

To answer RQ2 and RQ3, we use our search algorithm previously described to optimize the total
coverage predicted for each of the nine projects used in this research question. Since in RQ2 we
want to evaluate BOT in an ideal scenario, we assume the existence of a perfect prediction model,
which makes no mistakes (“Ideal”) and we use it to run the optimization (BOTIdeal). To do this,
we always predict the coverage actually achieved by EvoSuite in the five runs we executed. In
RQ3, instead, we evaluate BOT in the realistic scenario (BOTBRANCHOS) in which we use the best
prediction approach available (i.e., BRANCHOS). For both the research questions, as a first step
we run the approaches we compare (i.e., BOTIdeal, BOTBRANCHOS, and the two baselines described
below) on the nine projects to determine the search budgets they would assign to each class. Then,
we use such budgets to compute the actual coverage achieved by EvoSuite distinctly in the five
runs we completed. We used the coverage results obtained to answer RQ1 to do this, i.e., we did
not need to re-run EvoSuite.

It is worth noting that our approach requires some time to optimize the search budget. Thus, to
take this into account in the comparison with the baselines, we compute the average time needed
to run our approach and we remove it from the global budget of each project. This was done
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to simulate a scenario in which the developer has a given budget B available to test a system,
and B includes both the time needed to run our approach as well as the time needed to run the
test case generation. To do this, we preliminarily run our algorithm with the exact setting of the
experiment. Then, we computed the average time needed. We found it is very fast since it takes
only 2 seconds for a project, on average. When experimenting both BOTIdeal and BOTBRANCHOS,
we remove such time from the global budget of each project. We report, for each project, the mean
number of total branches covered. For each project, we use the t-test to check if the difference
between the total number of covered branches changes when using our approach and the baselines.
The null hypothesis is that the project coverage achieved over different EvoSuite runs is the
same: we reject such an hypothesis if the p-value is lower than 0.05. Finally, we also report the
Cohen’s d statistic [7] to compute the effect size of the significant differences. The effect size is
negligible for |d | < 0.2, it is small for 0.2 ≤ |d | < 0.5, it is medium for 0.5 ≤ |d | < 0.8, while it is
large otherwise. It is worth noting that, in this case, we use parametric statistics (i.e., t-test and
Cohen’s d), which implicitly assume the normality of the distributions we compare. We can safely
make this assumption since each sample of the distributions we compare (i.e., the project coverage)
is the sum of many random variables (i.e., the class coverages): according to the Central Limit
Theorem, regardless of the distribution of the single random variables, the distribution of their
normalized sum tend to be normal. EvoSuite failed to generate test cases in some runs for some
classes: this means we have the coverage achieved in five runs only for a subset of the classes we
take into account. For RQ2 and RQ3, we only consider the classes for which EvoSuite successfully
completed all five runs, i.e., 9,787 classes in total.

To check if our approach is able to improve the effectiveness of generated tests, we also com-
plete five additional runs of EvoSuite for each class to compute the strong mutation score. We
compare the number of mutants killed running tests generated using our optimization strategy
and the baseline which achieves the highest branch coverage. Also in this case, we use the t-test
to check if the number of killed mutants between the tests generated with our approach and the
ones generated with the baseline is significantly different and the Cohen’s d to report the effect
size of significant differences.

Baselines. We compare BOTIdeal and BOTBRANCHOS with two baselines: the first one equally
divides the project-level search budget among the classes (the Simple approach described by
Campos et al. [5]); the second one is the Budget approach introduced by Campos et al. [5],
which the authors use when no historical information is available. The Budget approach divides
the search budget proportionally to the number of branches of the classes: a higher budget is
assigned to classes with more branches to cover. Specifically, we first compute the budget per
branch rate (bbr ) dividing the total budget by the total number of branches; then, for each class
C with branches (C ) branches, we compute the candidate budget bbr × branches (C ). Since such a
value can be extremely low for small classes (even 0) and extremely large for big classes, we set a
minimum and a maximum allocable budget. If the candidate budget is not in such a range, we use
the minimum or the maximum value instead, and we update bbr based on the remaining budget
and the remaining branches. We use 300 as the maximum allocable budget. We tune the minimum
allocable budget on the same project we use for tuning BOT (i.e., PDFSam) using all the possible
values between 5 and 55. We selected 40 as the minimum allocable budget since it is the value
that allows one to achieve the highest coverage on such a project. For our algorithm, we assign a
project-level search budget of 60 × |C |, i.e., 60 seconds times the number of classes of the project.

We summarize the metrics computed and the analysis performed to answer the two research
questions in Table 3.
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Table 3. Summary of the Metrics Computed and the Analysis Performed to Answer

the Research Questions

Analysis Description Interpretation

R
Q

1

Correlation Pearson correlation coefficient. The higher, the better.
PRED(25) Percentage of predictions with a

relative error of 25%.
The higher, the better.

MSE Mean of the squared errors. The lower, the better.
Wilcoxon test Non-parametric comparison

between two distributions.
Significant if the p-value is lower
or equal to 0.05.

Cliff’s δ Non parametric effect size. The higher, the larger the
difference.

R
Q

2
−3

t-test (p-value) Parametric comparison between
two distributions.

Significant if the p-value is lower
or equal to 0.05.

Cohen’s d Parametric effect size. The higher, the larger the
difference.

4.4 Replication Package

The data and code used in our study are made publicly available.2 In particular, we provide
(i) all the datasets, including all the classes as subjects of our study, (ii) the raw data generated
to answer the three research questions, (iii) the results of the tuning, and (iv) all the scripts and
the programs used. We do this to make the experiment fully replicable to foster future research in
this field.

5 EMPIRICAL STUDY RESULTS

In this section, we discuss the results of our empirical study. Before answering our two research
questions, we show the results of the parameters’ tuning.

5.1 Parameter Tuning Results

PrEst. For computing PrEst , we need to tune two parameters, k and W . Figure 1 shows how
different combinations of k andW perform: we only show results forW ≤ 5, since greater values
ofW have worse results, in line with the trend depicted in Figure 1. The best results (complete data
in our replication package) are for W = 0. This shows that the estimation of probabilities using
operators only, as done by Ferrer et al. [9], does not help our approach but, instead, it increases
the error. The best value for the k parameter is 5, for which the approach achieves a slightly lower
error compared to other variants of the approach having W = 0. Such a quite large k exponent
drastically reduces the weight of sequences that are substantially different from the one under test
(see Section 3).

We also report some additional statistics for the best configuration of our approach, i.e., PrEst
(W = 0, k = 5). The mean squared error is 0.138 and the PRED(25) is 18.2%. The error distribu-
tion (P (c ) − P (c )∗) of PrEst is, overall, symmetrical (skewness of 0.07, i.e., slightly skewed to-
ward positive values). This shows that the approach is accurate, although, on average, it slightly
overestimates the condition probabilities. Such results may seem not very encouraging, in abso-
lute terms, since in more than 80% of the cases the relative absolute error is greater than 25%.
However, statically estimating the probability of satisfying a condition is a very challenging task.

2https://dibt.unimol.it/report/bot-tosem/

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 36. Pub. date: April 2021.

https://dibt.unimol.it/report/bot-tosem/


An Adaptive Search Budget Allocation Approach for Search-Based Test Case Generation 36:17

Fig. 1. Tuning of k andW parameters.

Indeed, checking if a branch is infeasible, which is an instance of the problem we try to solve, is an
undecidable problem. Therefore, considering the tackled problem, we think this is an acceptable
result, although there is still room for improvement.

As for the parameter required by the “Budget” approach [5], which provides the initial solution
for BOT, we found that the best value for ϵ is 20 (with a coverage of 1,721 branches). It is worth
noting that this is a third of the average class budget we use in our experiment (i.e., 1 minute).
Such a value is analogous to the value Campos et al. [5] used in their experiment (1 minute for an
average class budget of 3 minutes).

5.2 RQ1: Coverage Prediction in Time

We show in Table 4 the comparison between BRANCHOS and the baseline we considered. The
mean squared error (MSE) achieved by BRANCHOS is always lower than the MSE achieved by the
baseline. The p-value of the Wilcoxon test comparing the MSE achieved by the two approaches is
always 0. This confirms that the difference is always statistically significant. The magnitude of the
differences is small in most cases, with variations across the 10 projects. For Liferay, SweetHome
3D, and PDFsam, the magnitude of the difference is medium, while it is negligible only for Weka.

In almost all systems but one, the PRED(25) shows that the baseline makes larger errors. The
only exception is Weka, for which the PRED(25) of the baseline is slightly higher than the one
achieved by BRANCHOS. Finally, it is worth noting that the baseline has, on average, a very weak
correlation with the coverage. Indeed, the overall correlation is negative: this means that the higher
the predicted coverage value, the lower the actual coverage, when considering all the instances in
our dataset. On the other hand, BRANCHOS achieves, on average, a strong positive correlation
(∼0.62). To investigate more in-depth why BRANCHOS performs poorly on Weka, we report in
Table 5 the average value for the features we consider in BRANCHOS for all the projects. It is
interesting to notice that, for Weka, the BSDmax and BSDavд metrics are higher than for the other
projects. Such a project contains a higher number of complex classes by nature since it is a toolbox
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Table 4. Comparison between BRANCHOS and the Baseline

Correlation PRED(25) MSE Wilcoxon test (p) Cliff’s δ

BRANCHOS Baseline BRANCHOS Baseline BRANCHOS Baseline

Netweaver 0.469 0.052 50.0% 38.7% 0.086 0.099 <0.001 0.166 (small)

Squirrel SQL 0.527 0.054 42.6% 23.6% 0.098 0.119 <0.001 0.197 (small)

SweetHome 3D 0.705 0.053 23.3% 23.5% 0.087 0.228 <0.001 0.393 (medium)

Vuze 0.592 0.080 45.1% 24.4% 0.098 0.139 <0.001 0.246 (small)

Freemind 0.472 0.031 25.8% 15.7% 0.153 0.238 <0.001 0.272 (small)

Checkstyle 0.648 0.033 30.6% 20.6% 0.090 0.164 <0.001 0.282 (small)

Weka 0.603 0.124 35.6% 38.2% 0.089 0.094 <0.001 0.055 (negl.)

Liferay 0.602 0.076 55.3% 12.0% 0.080 0.125 <0.001 0.432 (medium)

PDFsam 0.720 0.041 40.4% 14.6% 0.089 0.169 <0.001 0.360 (medium)

Firebird 0.730 0.083 59.7% 21.4% 0.067 0.091 <0.001 0.328 (small)

Average 0.622 −0.151 48.3% 18.6% 0.089 0.131 – –

Table 5. The Mean Value of Each Feature We Use in BRANCHOS for Each Project

Project BCE BSDmax BSDavд #Branches Class Size #PrMethods #Fields #Parameters #Methods

Netweaver 0.42 0.09 0.02 30.71 371.04 0.46 5.33 17.12 11.64

Squirrel SQL 0.40 0.08 0.02 19.40 229.87 1.44 11.73 15.33 12.11

SweetHome 3D 0.35 0.14 0.02 99.65 901.87 5.31 24.96 33.95 38.26

Vuze 0.40 0.10 0.02 39.75 369.23 0.63 3.91 13.49 14.62

Freemind 0.37 0.10 0.02 28.08 293.56 1.50 17.72 17.91 14.30

Checkstyle 0.38 0.08 0.02 18.87 181.23 0.97 6.93 6.84 8.50

Weka 0.40 0.16 0.03 69.05 699.42 0.84 15.79 19.44 20.17

Liferay 0.42 0.07 0.01 14.74 230.59 0.22 4.61 16.04 14.72

PDFsam 0.39 0.10 0.02 22.14 282.58 0.78 17.57 11.94 8.66

Firebird 0.40 0.09 0.02 50.31 460.90 0.78 6.39 19.27 17.87

for machine learning, with many state-of-the-art algorithms implemented: it is likely that training
BRANCHOS on the other projects does not allow BRANCHOS to learn from enough complex
classes. As a result, BRANCHOS is not able to provide accurate estimations when it encounters
such classes.

Figure 2 shows two examples of prediction for the project Liferay: at the top, a good prediction
done by BRANCHOS (class PortletPreferencesWrapper); at the bottom, a bad prediction (class
ContactModelImpl). In the first case, BRANCHOS almost perfectly predicts the final coverage, but
it also approximates well the coverage achieved with intermediate search budgets. In the second
case, instead, BRANCHOS underestimates the coverage. This is probably due to the fact that some
metrics, like the number of branches (91) and the number of fields (64), both quite high, deceive
the regressor.

We also report in Figure 3 the boxplot of the squared errors made by the two approaches when
considering the dataset as a whole (i.e., when merging all classes belonging to the 10 systems
in a single dataset). The median of the distribution depicted for BRANCHOS (i.e., median=0.035)
confirms the good accuracy of our approach. An important point to stress here is the performance
achieved by the baseline. While it is clear that the baseline we exploited is trivial (i.e., for each
experimented search budget, the baseline predicts the mean branch coverage achieved across all
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Fig. 2. Two examples of prediction from the Liferay project. In the first one, BRANCHOS achieves an almost

perfect prediction of the actual coverage, while in the second one it underestimates it.

Fig. 3. Distribution of the squared errors by BRANCHOS and the baseline for the prediction in time (without

outliers).

classes in the training set for that specific budget) it is worth noticing that (i) BRANCHOS is the
first technique able to predict branch coverage in time (i.e., taking the search budget into account),
thus not having any clear competitor; and (ii) in our opinion, there is still value in showing that a
very simple and straightforward approach cannot be applied to solve a complex problem such as
the one we are tackling.

To understand the worth of the single metrics we considered, we built 10 linear regression mod-
els, one for each feature. For a given feature f , the linear regression model Lf uses f itself and
the progressive budget to predict the coverage. We trained and tested the model on the whole
dataset (without cross-validation) since in this case we are building a descriptive model rather than
a predictive one. We report in Table 6 the correlation achieved by the models, which indicates the
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Table 6. Ranked Worth of Single Metrics Measured

Through the Correlation Between the Branch

Coverage and Linear Regression Models That Used

Each Feature in Isolation and the Progressive

Budget as Independent Variables and the Coverage

as Dependent Variable

Metric Direction Correlation

BCE � 0.4719
BSDmax � 0.3901
BSDavд � 0.3671
#Branches � 0.3004
Class Size � 0.2819
#PrMethods � 0.2379
#Fields � 0.1705
#Parameters � 0.1197
#Methods � 0.1036

The direction indicates the sign of the coefficient deter-

mined for the feature (�: positive, �: negative).

Fig. 4. Analysis of the variation of the mean squared error (y -axis) when the dataset size (x-axis) increases.

worth of each feature alone. As expected, the metrics specifically designed to achieve this goal are
the most important ones (BCE, BSDmax , and BSDavд). Interestingly, the number of private meth-
ods (#PrMethods) is, alone, more important than the total number of methods. Moreover, such a
metric appears to be more important than the number of fields and parameters, which intuitively
might appear as very correlated to the coverage that a test generation technique can achieve. This
probably happens because while, on the one hand, a test generation technique has full control on
parameters and some control on the fields, it has no direct control on private methods.

Finally, we wanted to check how the size of the training set influences the performance of BRAN-
CHOS. To do this, we first defined a test set composed by a stratified sample of 500 classes, 50 from
each project. Then, we tried to sample different numbers of classes, ranging between 500 and 9,500,
with a step of 500 classes, from the remaining classes. For each sample, we trained BRANCHOS
and we tested it on the test set previously defined. Figure 4 shows how the MSE changes when the
size of the dataset increases. Once the 5,000 classes mark is reached, the improvement achieved by
adding more classes is very small, i.e., the MSE is always around 0.075. This suggests that increasing
even further the number of classes may have a limited effect on the performance of BRANCHOS.
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Table 7. Comparison Between the Branch Coverage Achieved by the Approaches at Project Level

Project Covered Branches BOTBRANCHOS vs. Budget BOTIdeal vs. Budget

BOTIdeal BOTBRANCHOS Budget [5] Simple [5] t -test (pf ) Cohen’s d t -test (p) Cohen’s d

Netweaver 6,125.6 6,088.8 6,096.4 5,911.2 0.037 −0.11 (N) 0.022 0.47 (S)

Squirrel SQL 11,810.2 11,688.6 11,651.4 11,339.0 0.104 0.05 (N) 0.008 0.21 (S)

SweetHome 3D 3,818.0 3,531.8 3,428.2 3,332.0 0.018 2.29 (L) 0.001 5.81 (L)

Vuze 31,670.4 30,458.6 30,170.8 28,751.2 <0.000 1.69 (L) <0.001 9.01 (L)

Freemind 3,833.8 3,749.2 3,744.6 3,636.4 0.649 0.11 (N) <0.001 2.36 (L)

Checkstyle 1,098.8 1,077.2 1,079.4 1,079.6 0.444 −0.04 (N) 0.001 0.36 (S)

Weka 33,717.2 32,363.6 31,852.6 30,659.6 <0.000 4.93 (L) <0.001 12.05 (L)

Liferay 81,960.8 81,355.8 81,206.6 79,809.0 0.010 0.27 (S) 0.001 1.37 (L)

Firebird 4,634.0 4,548.0 4,504.6 4,182.8 0.001 0.77 (M) 0.002 1.88 (L)

We report in boldface the result of the best approach, while we underline the results of the best realistic approach (i.e.,

excluding BOTIdeal) for each project. We also report the statistical comparison between BOTIdeal/BOTBRANCHOS and the

best baseline (Budget [5]) over five runs (significant results in bold), along with the effect size (Cohen’s d ) and its magnitude

(Negligible, Small, Medium, or Large).

5.3 RQ2: Adaptive Budget Allocation in the Ideal Scenario

Table 7 reports the project-level branch coverage achieved by the algorithm with an ideal coverage
prediction approach (BOTIdeal), the one with the best prediction approach available (BOTBRANCHOS)
and the two baselines. We discuss the results obtained by BOTBRANCHOS in the next subsection.
First, it is worth noting that the “Budget” approach [5] always achieves a higher coverage compared
to the “Simple” approach. This confirms the result achieved by Campos et al. [5]. BOTIdeal allows
one to improve the branch coverage at project level for all the projects we took into account. On
average, we obtained an improvement of ∼3.6% of the branch coverage. The project for which we
obtained the lowest relative improvement was Liferay: BOTIdeal allows one to cover 0.93% that
the “Budget” approach could not cover. While this value is relatively small, it is worth noting
that, in absolute terms, this means that our approach allows one to cover 754 additional branches
compared to the “Budget” approach. On the other hand, the project for which BOTIdeal allows one
to achieve the best relative improvement is SweetHome 3D: in this case, our approach allows one
to cover 11.37% additional branches (390 in absolute terms).

The difference between the two approaches we compared is significant for all the projects. In
addition, the effect size shows that the difference is never negligible: it is small for three projects
out of nine, and large for six projects out of nine.

We also checked the difference of coverage at class level. Most of the classes (7,975) achieve
the exact same coverage when using both the approaches. BOTIdeal allows one to increase the
coverage of 1,592 classes (16.6%), while the “Budget” approach achieves a higher coverage for a
single class, i.e., AssociatorEvaluation from Weka. This happens because BOTIdeal prefers to
sacrifice a branch from such a class to cover more branches of another class at some step.

We report the results of the mutation analysis in Table 8. BOTIdeal is always able to kill a higher
number of mutants compared to the Budget approach, except for one project (Weka). BOTIdeal kills
a significantly higher number of mutants for five projects out of nine. For Weka, the difference is
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Table 8. Comparison between the Number of Mutants Killed By the Approaches at Project Level

Project
Killed Mutants BOTBRANCHOS vs. Budget BOTIdeal vs. Budget

BOTIdeal BOTBRANCHOS Budget [5] t -test (p) Cohen’s d t -test (p) Cohen’s d

Netweaver 6,278.5 6,331.8 6,230.5 0.005 1.70 (L) 0.084 1.08 (L)

Squirrel SQL 19,474.3 19,586.4 18,937.3 0.021 1.46 (L) 0.001 2.40 (L)

SweetHome 3D 4,040.0 3,707.0 3,597.1 0.147 1.03 (L) <0.001 5.68 (L)

Vuze 42,294.4 43,229.1 41,546.8 0.002 2.39 (L) 0.047 0.88 (L)

Freemind 5,170.6 5,017.5 4,793.6 0.047 0.91 (L) <0.001 1.92 (L)

Checkstyle 785.3 761.7 751.9 0.694 0.32 (S) 0.114 0.98 (L)

Weka 36,421.5 37,778.5 37,651.4 0.444 0.27 (S) 0.012 −1.97 (L)

Liferay 83,307.3 83,587.4 81,883.8 0.004 2.00 (L) 0.016 1.47 (L)

Firebird 8,018.3 8,084.8 7,735.7 0.064 1.50 (L) 0.090 1.13 (L)

We report in boldface the result of the best approach for each project. We also report the statistical comparison

between BOTIdeal/BOTBRANCHOS and the best baseline (Budget [5]) over five runs (significant results in bold), along

with the effect size (Cohen’s d ) and its magnitude (Negligible, Small, Medium, or Large).

significant in favor of the baseline. For all the differences, even the ones for which we could not
achieve statistically significant results, the effect size is large. We tried to understand why for such
a project the Budget approach is able to kill a higher number of mutants. We found that Evosuite
crashed on 12 classes for at least one of the approaches: BOTIdeal allocated a high budget on 10 of
such classes (219 seconds each, on average) and, therefore, it “lost” such a budget. In total, for Weka,
BOTIdeal used a budget 995 seconds (i.e., 16 minutes) lower. On average, despite such a peculiar
case, BOTIdeal allows one to kill 3.3% more mutants compared to the baseline.

5.4 RQ3: Adaptive Budget Allocation with BRANCHOS

Like we did for RQ2, we report in Table 7 also the results achieved by BOTBRANCHOS, i.e., the BOT
algorithm that uses the best branch coverage prediction approach available, i.e., BRANCHOS. We
underline the results achieved by the best realistic approach.

It can be noticed that BOTBRANCHOS, as expected, always performs worse than its ideal form
because of the prediction errors made by BRANCHOS. However, BOTBRANCHOS still allows one
to improve the project coverage of most of the projects (seven out of nine) compared to the best
baseline, i.e., the “Budget” approach [5]. The opposite happens just for two projects: Neatweaver
and Checkstyle. For the former, the “Budget” approach only covers eight additional branches, while
for the latter such a difference is even smaller (two branches). Indeed, the effect size is negligible
and not significant in both the cases.

The project that obtained the smallest relative improvement is Freemind (0.12%, i.e., only five
additional branches covered), while the project that would benefit the most from BOTBRANCHOS is,
again, SweetHome 3D (3.0%, i.e., 103 additional branches). In general, the improvement is consis-
tent for all the projects, but it is smaller than the one achieved in the ideal scenario: the average
relative improvement is only 0.76%.

In this realistic scenario, the difference is statistically significant only for three projects out of
nine, i.e., SweetHome 3D, Weka (+1.6% coverage, i.e., 511 additional branches), and Vuze (+0.95%
coverage, i.e., +288 additional branches). Only in such cases, the effect size is large, while in the
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other cases it is negligible (four out of nine), small or medium (one project each). While the per-
centage of improvement is small, it is worth highlighting that BOTBRANCHOS allows one to cover
1,127 branches that could not be covered using the “Budget” approach.

Also in this case, we checked the difference of coverage at class level. Again, most of the classes
(8,352) achieve the exact same coverage when using both the approaches. BOTBRANCHOS allows
one to increase the coverage of 730 classes (7.6%), while the “Budget” approach achieves a higher
coverage for a 486 classes (5.0%). We tried to understand the characteristics of such classes: we
found that the classes for which BOTBRANCHOS achieves a higher coverage are generally bigger in
terms of number of branches (∼96 branches, on average) compared to both the ones for which the
“Budget” approach achieves a higher coverage (∼55 branches, on average) and the ones for which
the two approaches achieve the same coverage (∼ 31 branches, on average).

Finally, Table 8 shows the number of mutants killed by our approach and the Budget approach.
The tests generated with BOTBRANCHOS allow one to kill a higher number of mutants for all the
projects as compared to the baseline. In addition, the number of mutants killed is significantly
higher for five projects out of nine. On average, BOT is able to kill 3.0% more mutants compared
to the baseline. This shows that the approximation of the ideal BOT we defined is able to achieve
a result close to the one achieved by the ideal version.

5.5 Discussion

The results of our experiments show that both the approaches we introduced, i.e., BRANCHOS
and BOT, allow one to improve the baselines we considered (RQ1 and RQ2). However, when we
tried to combine them to understand the actual improvement that BOT can have in a real usage
scenario, we found that such an improvement is quite slim. These results show how important
it is to accurately predict the branch coverage in time: while BRANCHOS is the best coverage
prediction approach we experimented with, it is still insufficient to unleash the full potential of
the optimization algorithm we introduced, BOT. Still, it allows one to improve by 3.0% the average
number of mutants killed by generated tests: this shows that, while there is still a margin for
improvement, our approach could be useful in practice. Future research should aim at improving
the coverage prediction accuracy since this is crucial for achieving a higher coverage at project
level. To foster future studies in this field and to allow future researchers to tackle this problem
without the cost of running a search-based test case generation tool, we release all the material
we used to run the experiments, including the results of the 54,697 runs of EvoSuite in which
we observed the coverage for every second of execution of the tool for 300 seconds (for a total of
15.2M data-points). Future researchers can use our datasets to device better prediction models and
test BOT.

Our future work includes the integration of BOT in EvoSuite to make it an easier-to-use tool
for practitioners.

6 THREATS TO VALIDITY

Construct Validity. Threats to construct validity are mainly related to the measure of the cover-
age we consider in our study.

We run EvoSuite on each class only once. Since the technique we use is stochastic, the level
of coverage measured in different runs may vary. Given the particularly time-consuming task, we
had to balance the effort to spend in terms of (i) the search budget to assign to each class, (ii) the
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number of classes to test, and (iii) the number of runs for each class. Using a large search budget,
in our context, was a strict requirement needed to predict how the coverage increases over time
and also to make sure that the BCE metric would not be penalized, since we expect it to correlate
with the “maximum” coverage that can be reached by search-based testing algorithms on a given
unit to test. We chose 300 seconds, which, in automated test case generation, is a quite high budget
(e.g., the default budget used by EvoSuite is 60 seconds).

Having clarified that saving time on the assigned budget was not an option, the two other factors
influencing the execution time were the number of classes and the number of runs per class. Given
a number of runs R for each class, the number of classes analyzable in a fixed amount decreases
with the increase of R. For example, two runs would have required one to halve the number of
classes we considered in our study assuming a fixed amount of time available. The number of
runs suggested in this context is 30 [1]. To estimate the difference among runs and to assess the
possible bias introduced by our choice of maximizing the number of tested classes rather than the
number of runs per class, we tried to run EvoSuite 10 times on the 10 largest classes in terms
of the number of branches from our dataset. As done in our study, we considered the coverage
achieved given a search budget varying from 1 to 300 seconds at steps of 1 second. Given the same
class under test and the same level of budget (e.g., 25 seconds), the maximum absolute variation
we observed is 0.035. This means that two different runs on the same class and with the same
budget achieved a difference on coverage of at most∼4%. When considering only the final coverage
(i.e., the one achieved after 300 seconds), the mean absolute variation is 0.002 and the maximum
absolute variation is 0.016 (i.e., meaning less than 2%).

Internal Validity. Threats to internal validity concern internal factors of our study that could
hinder its validity. The main threat of this category is the choice of the machine learning technique
to use for our approach. We choose Random Forest [4], since it performed better than others we
tested (linear regression, REPTree from Weka [14], and a Multilayer Perceptron [16]), without
requiring an unreasonable amount of training time (about 40 minutes for each fold). However,
this does not exclude that using other more expensive techniques, such as deep neural networks
(DNNs) or support vector machines (SVMs), would result in better predictions.

Another problem related to the use of machine learning is the possibility of over-fitting. We
limited this risk experimenting our techniques in a cross-project scenario, i.e., with training data
completely separated from test data. We performed statistical analysis (Wilcoxon test and effect
size) to measure the difference in terms of error of the models we compared, to exclude that the
differences in the prediction error between BRANCHOS and the baselines is achieved by chance.

It can be argued that using BOT requires time-intensive operations (e.g., training of the classifier)
that would make it not useful in practice. We release the training set we built for BRANCHOS so
that it is possible to use our classifier out-of-the-box, without the need to perform further training.
Since the optimization step requires some time, we removed such overhead from the project-level
search budget to divide, in order to test the approach in a realistic scenario. Anyway, we found that
the time needed to optimize the search budget is generally very low. Finally, we used EvoSuite to
compute the strong mutation score for the techniques we compared. For some of the combination
class-budget we provided as input to the tool, it crashed with a NullPointerException. Therefore,
we had to ignore such classes. This, however, could negatively impact the results. We computed
the search budget used for the classes for which we have the result for each approach and we found
that the baseline used, in total, a higher amount of search budget: BOTIdeal and BOTBRANCHOS used
0.14% (∼1 hour and 7 minutes) and 0.10% (∼47 minutes) less budget, respectively. This allows us
to conclude that the actual improvement may be slightly higher than the one we reported, mostly
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in the cases in which classes with high budget were not considered, such as the case of Weka for
BOTIdeal already discussed in the results.

External Validity. Threats to external validity concern the generalization of our findings. To
limit the risk of taking into account classes not representative enough of a typical software project,
we answered RQ1 and RQ2 by taking into account all the classes from the studied projects.

We did not pick a sample of the classes to have a larger dataset from which BRANCHOS could
extract knowledge and to have a better assessment of what would be the performance of the com-
pared approaches in a real scenario.

Another possible threat to the generalizability of our findings is that we used only a search-
based test case generation approach (i.e., MOSA [24]) implemented in one tool (EvoSuite). It is
possible that for different techniques/tools (such as Randoop) the results would be different. Also,
it is worth noting that BRANCHOS and BOT are mainly designed to work on search-based test case
generation techniques: it may not be possible to use them on top of inherently different techniques,
such as dynamic symbolic execution. Replication will be devoted to corroborate our findings.

7 CONCLUSION AND FUTURE WORK

We presented BOT, an approach to optimize the project-level branch coverage by adaptively dis-
tributing the global search budget defined at project level among the classes in the context of
search-based test case generation. BOT uses a search algorithm and BRANCHOS, the first approach
that predicts the branch coverage achieved by an automatic search-based test case generation ap-
proach on a given class with a given search budget (expressed as seconds). Such an approach uses
machine learning to train a regressor using as features structural metrics and the assigned search
budget.

We experimented both BRANCHOS and BOT, and we compared them to three baselines. The
results indicated that (i) BRANCHOS is able to overcome its baseline in terms of coverage pre-
diction error in time, (ii) using BOT with an ideal coverage prediction approach to optimize the
search budget allocation it would be possible to improve the project-level branch coverage by 3.6%
and the number of killed mutants by 3.3%, on average, and (iii) combining BRANCHOS and BOT
allows one to achieve a limited improvement in terms of branch coverage and a quite substantial
improvement in terms of number of killed mutants.

Even if the results are encouraging, there is still much room for improvement, mostly in terms
of coverage prediction. For this reason, we release our dataset to facilitate future research in this
field. We will investigate the definition and inclusion in BRANCHOS of other structural metrics
to improve its prediction power and the overall accuracy of BOT . Finally, a next step will be to
integrate BOT in EvoSuite to build a fully budget-aware test case generation tool that can be
simply used on whole projects. The BRANCHOS model built on the training set we used in this
article could be adopted as is, i.e., without the necessity of gathering more data. In other words,
this means that running BOT in practice would require virtually no effort by the developers.
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