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Refactoring aims at improving code non-functional attributes without modifying its external behavior. Pre-
vious studies investigated the motivations behind refactoring by surveying developers. With the aim of gen-
eralizing and complementing their findings, we present a large-scale study quantitatively and qualitatively
investigating why developers perform refactoring in open source projects. First, we mine 287,813 refactor-
ing operations performed in the history of 150 systems. Using this dataset, we investigate the interplay be-
tween refactoring operations and process (e.g., previous changes/fixes) and product (e.g., quality metrics)
metrics. Then, we manually analyze 551 merged pull requests implementing refactoring operations and clas-
sify the motivations behind the implemented refactorings (e.g., removal of code duplication). Our results led to
(i) quantitative evidence of the relationship existing between certain process/product metrics and refactoring
operations and (ii) a detailed taxonomy, generalizing and complementing the ones existing in the literature,
of motivations pushing developers to refactor source code.
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1 INTRODUCTION

Software refactoring has been widely studied in the research community, with most of the works
falling into three main research threads: (i) approaches aimed at identifying refactoring opportu-
nities [83], (ii) techniques to recommend refactoring solutions for a given design flaw [36], and
(iii) empirical studies looking at software refactoring from many different perspectives [43, 80, 91,
104, 105]. The knowledge of motivations pushing developers to perform refactoring [91] can help
in building recommender systems able to propose suitable solutions for that. For this reason, un-
derstanding when and why developers perform refactoring has been the goal of many previous
studies [39, 60, 91, 104, 105].

Some of these studies tried to answer this question by looking at specific factors that might
correlate with refactoring operations, such as code quality proxies (i.e., quantitative measures pro-
viding indications about the internal quality of code components, such as quality metrics or code
smells) [39, 104]. While valuable, these studies provide limited insights into the reasons behind the
performed refactorings, since their analysis is mostly quantitative and limited to a small number
of factors. Other studies opted for a more qualitative approach by interviewing developers [60,
105] to identify the major factors that motivate their refactorings. Although these studies have pi-
oneered the investigation of the reasons pushing developers to refactor their code, as observed by
Silva et al. [91], the previously mentioned surveys are general purpose, meaning that they do not
ask developers to justify specific refactorings they performed, but rather study refactoring habits
in general. To address this limitation, Silva et al. [91] interviewed developers who authored 222
refactoring-related commits to understand the reasons behind these specific operations.

Stemming from the studies discussed above and to generalize their findings [60, 91, 105], this
article describes large-scale mining study combining quantitative and qualitative analyses to in-
vestigate the motivations behind refactoring operations, by observing code and discussions rather
than interviewing developers. From a quantitative point of view, we mine the change history of 150
Java repositories hosted on GitHub to extract 287,813 refactoring operations of 25 different types
performed by developers through the RMiner tool [99]. Then, we analyze product- (e.g., slopes
indicating whether the quality of code components as assessed by quality metrics is decreasing
over time) and process-related (e.g., source code change- and fault-proneness) factors that con-
tribute to trigger refactoring actions. As compared to previous work [39, 104], we consider a more
comprehensive set of factors and, more importantly, analyze them in a single model rather than
in isolation, showing which ones are related to refactoring operations. From a qualitative point of
view, we use the same set of systems to manually analyze a statistically significant sample of 551
pull requests (PRs) in which (i) developers discuss refactoring and (ii) RMiner identifies at least
one refactoring operation. Through a manual analysis, we identify the rationale of the refactoring
change, and whether it is the main intent of the change or, rather, they are triggered by the code
review process of the PR. As main contribution of this analysis, we defined an extensive taxon-
omy of 67 motivations pushing developers to implement refactoring operations. Our qualitative
analysis complements and generalizes the findings in previous survey-based studies [60, 91, 105]
by investigating the same research question with a completely different experimental design.

As compared to the most similar work (i.e., Silva et al. [91]), the following notable differences
can be highlighted for what concerns the study design and findings:

o Study Design: surveying developers vs analyzing their activities. While Silva et al. contacted
the developers authoring the refactorings asking their motivations for the implemented
changes, we manually inspect pull requests implementing refactorings by analyzing their
discussion and related commits to create our taxonomy of motivations. Investigating the
same research question with two different experimental designs can lead to additional in-
sights and helps in generalizing previous findings.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 29. Pub. date: September 2020.



Why Developers Refactor Source Code: A Mining-based Study 29:3

e Study Design: complementing qualitative and quantitative analysis. In our work, we analyze
the motivations behind refactoring operations not only from a qualitative perspective (as
done by Silva et al. [91]) but also by quantitatively studying the influence of product and
process metrics on the triggering of refactoring operations. Also, to the best of our knowl-
edge, our study is the first one analyzing these metrics in a single model rather than in
isolation (as done in Reference [39], for example).

e Findings: complementing and generalizing Silva et al. [91]. As output of their study, Silva
et al. defined a list of 44 motivations for 12 frequently applied refactoring operations. Our
taxonomy, besides confirming 41 of their motivations, thus improving the generalizability
of their findings, includes 26 additional ones that are not covered in the previous study.

Our quantitative analysis indicates that code readability and process-related factors correlate
with the changes a commit containing refactoring operations has. As the main result of the qual-
itative analysis, we provide a comprehensive taxonomy of 67 categories of motivations leading
developers to refactoring operations. We describe and exemplify each category, and discuss its
implications in refactoring research and practice.

2 STUDY DESIGN

The goal of this study is to quantitatively and qualitatively analyze the context in which refac-
toring operations occur in open source projects, with the aim of identifying the circumstances
that may make a refactoring happen. The quality focus relates not only to code quality but also to
the improvement of the software development process. The context consists of 287,813 refactoring
actions automatically identified in 150 open-source projects and, for the qualitative analysis, of
551 manually analyzed PRs mentioning refactoring operations and linked onto refactoring-related
commits.
We address the following two research questions (RQs):

RQ1: Which product and process-related factors relate with an increase of refactoring operation
chances? We are interested in studying if various source code features or process features correlate
with the presence of refactoring operations in a commit.

RQ;: What are the reasons for performing a refactoring operation? We investigate the rationale
behind refactoring opportunities. We consider refactorings occurred in PRs, and perform a quali-
tative analysis of developers’ discussions over the PR. Also, since previous work found that most
refactoring operations occur with other changes [80], by analyzing PRs we give a closer look at
this phenomenon, investigating if the refactoring was tangled with other changes, and looking
at whether the refactoring was the primary purpose of the PR. We decided to answer this RQ by
looking at PRs rather than at commits implementing refactorings, since PRs offer a richer set of
information to analyze to derive the rationale behind refactoring operations. Indeed, they often
feature a discussion among developers that can help in better understanding what the goal of the
implemented change was.

The formulated RQs investigate the same phenomenon (i.e., what the motivations for refactor-
ing operations are) from two different perspectives (quantitative—RQ; vs. qualitative—RQ5). The
catalog of motivations identified in the two RQs can complement and support each other.

2.1 Study Context

We identified the projects to be studied among repositories hosted on GitHub. Since the infras-
tructure used in our study (e.g., the refactoring detection tool) only supports Java, we focus on
Java projects. Among all Java projects on GitHub, we aim at studying active projects having

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 29. Pub. date: September 2020.



29:4 J. Pantiuchina et al.

g © ° o
250000 _{ — 2500 _| 100 _| — 1000_| — 10000 _| g
! |
| ¢} !
200000_{ | 2000 _| O 80 _| : 800 _| i 8000 _| E
1 ] : I e
150 000 _| E 1500_| 60 _| 600_| | 6000 _| i
I
| |
100 000 _{ 1000_| ! 40 _| 400 _| 4000_|
50 000 _| 500 _| @ 20_| 200 _| 2000 _| B
: , | T =
O—T— 0O——— 0 ——T— 0O—7— O—T1—
LOC #Classes #Contributors #Closed PRs #Commits

Fig. 1. Characteristics of the 150 projects used in our study.

a non-trivial change history to study (needed to mine the PRs needed for our study) and not
representing personal and/or toy projects (e.g., a project created by a student during an assign-
ment). To identify these projects we applied a number of selection criteria, only retaining projects
having:

o At least 5 contributors and 1 fork, to exclude personal/toy projects.

o At least 500 commits and 100 PRs, to exclude projects having a short change history and
unlikely to provide useful PRs for our study.

e Modified at least once in the period Jan-May 2019, to exclude inactive projects at the time in
which this study has been run.

From the set of 303 remaining projects, we randomly selected 150 of them for our study (list
available in Reference [27]). The choice of selecting a subset of the 303 projects was dictated by
the computationally expensive data extraction process adopted in our study. Indeed, as detailed
in the following, besides detecting refactoring operations, we computed 42 product- and process-
metrics (e.g., code quality metrics, change-proneness of classes) for each of the 213,102 commits in
the studied projects. This process took three months on a 56-core server. Figure 1 reports boxplots
depicting the distribution of Lines of Code (LOC), number of classes (#Classes), number of contrib-
utors (#Contributors), number of closed PRs (#Closed PRs), and number of commits (#Commits)
for the analyzed 150 systems. The raw data from which this figure has been created is available in
our replication package [27].

We used the RMiner tool [99] to detect the refactorings implemented by developers in the stud-
ied projects. We focus on commits performed in the master/default branch of each project. We
have chosen RMiner due to its high reported precision (98%) and recall (87%) [99]. RMiner takes
as input two consecutive commits and provides as output the set of detected refactorings (see [99]
for the supported refactorings).

2.2 Quantitative Analysis (RQ;)

The occurrences of the detected refactorings constitute the dependent variable for RQ;. As inde-
pendent variables, we consider process-/product-related factors for each snapshot s; (commit) of
the master branch.
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Table 1. Quality Metrics (Product-related Factors)

Metric Description

CBO v Coupling Between Object classes: measures the dependencies a class has [46]

WMC v Weighted Methods per Class: sums the cyclomatic complexity of the methods in a
class [46]

RFC v Response For a Class: the number of methods in a class plus the number of remote
methods that are called recursively through the entire call tree [46]

ELOC v Effective Lines Of Code: the lines of code excluding blank lines and comments

NOM v Number Of Methods in a class

NOPM v Number Of Public Methods in a class

DIT v Depth of Inheritance Tree: the length of the path from a class to its farthest
ancestor [46]

NOC v Number Of Children (direct subclasses) of a class

NOF v Number Of Fields declared in a class

NOSF v Number Of Static Fields declared in a class

NOPF Number Of Public Fields declared in a class

NOSM v/ Number Of Static Methods in a class

NOSI v Number Of Static Invocations of a class

HsLCOM v*  Henderson-Sellers revised Lack of Cohesion Of Methods (LCOM): a class cohesion

metric based on the sharing of local instance variables by the methods of the
class [46]. HSLCOM dresses limitations of the original LCOM [58]

C3 v Conceptual Cohesion of Classes: avg. textual similarity between all pairs of methods
in a class [74]
StrRead v Structural readability: uses structural aspects (e.g., line length) to model code

readability [41]

ComRead v Comprehensive readability model: combines structural, visual (e.g., alignment) and

textual features (e.g., comments readability) [90]

Near each factor, we indicate whether (v') it was retained. The factors retained in the model are also highlighted in

bold.

2.2.1

Identification of Product and Process Metrics. The considered metrics are summarized in

Tables 1, 2, and 3 and described in the following. The selection of these metrics (detailed in the
following) is based on the will to include in our study:

(1)

®)

Metrics capturing code quality from different perspectives (Table 1). We included both struc-
tural and semantic (i.e., textual) metrics that have been shown to capture orthogonal code
quality aspects [74]. Also, we considered the recent readability metrics proposed in the lit-
erature [41, 90] that have been shown to highly correlate with the developers’ assessment
of code readability.

Code smells and quality issues widely studied in the literature (Table 2). The presence of code
smells has been correlated with higher change- and fault-proneness of code [82] and, thus,
they could also be responsible for the triggering of refactoring actions. Also, static analysis
tools are more and more used in the context of continuous integration to perform basic
code quality checks at commit time. Thus, we decided to include the warnings raised by
one of these state-of-the-art tools, i.e., PMD [13].

Process-related factors (Table 3). These metrics are meant to provide a view on the devel-
opment process, the developers involved in it, and historical information about the code
components. We conjecture that these factors can play an important role in taking refac-
toring decisions, as also partially confirmed by previous work in the literature [104].
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Table 2. Code Design Flaws (Product-related Factors)

Design Flaw Description

DECOR Code Smells

Blob Class A large class that monopolizes most of the application logic [40]

Complex Class v/ A class characterized by a high cyclomatic complexity [40]

Spaghetti Code v/ A class declaring long methods without parameters [40]

CDSBP v Class Data Should be Private: violation of information hiding principle [54]

Functional Decomposition v Scarcely used object-oriented principles, such as inheritance and
polymorphism; few methods and many private fields [40]

PMD code quality warnings
Excessive Coupling v’ A highly coupled class hindering reuse and maintainability [54]

Too Many Nested If Makes the code harder to understand and increase error-proneness
Statements v’

Excessive Imports v’ It might indicate too high coupling
Too High NPath Complexity NPath is the number of acyclic execution paths throughout a method
Excessive Method Length v* It might indicate too many functionalities in a single method

Excessive Class Length It might indicate too many responsibilities implemented in a class

Too Many Fields v/ It can make the code hard to understand

Too Many Methods v/ It might indicate too many responsibilities in a class

Cyclomatic Complexity An excessive degree of decisional logic in a class

Excessive Parameter List v It might indicate the need for a new object to wrap them

NCSS Type Count v/ Similar to excessive class length, but it only considers actual statements
NCSS Method Count v/ Similar to excessive method length, but it only considers actual statements

NCSS Constructor Count v/ Equivalent of NCSS Method Count for constructors

Near each factor, we indicate whether (v') it was retained. The factors retained in the model are also highlighted in bold.

Table 3. Process-related Factors

Metric Description

Closeness to a previous release v/ The number of commits until the previous minor/major release
Closeness to a next release v/ The number of commits until the next minor/major release
Fault-Proneness v/ Number of bugs fixed in the project history on a given class
Change-Proneness v’ The average number of lines impacted in commits related to a class

Developer Overall Experience v’ The number of past commits a developer performed
Developer Class Experience v/ The number of past commits on a class performed by a developer

Near each factor, we indicate whether (v') it was retained. The factors retained in the model are also highlighted in bold.

As detailed in Section 2.2.2, to avoid multicollinearity, we performed a variable selection. Near
each metric, we indicate the cluster it belongs to and whether (v') it was retained.

Source Code Quality Metrics. We consider, for each class C changed in each snapshot s;, its
quality trend as assessed by the 18 metrics in Table 1. These metrics capture different aspects of
code quality, including size (e.g., ELOC), coupling (e.g., CBO), inheritance (e.g., DIT), complexity
(WMC), encapsulation (e.g., NOPM), and readability (e.g., StrRead). The first 13 metrics in Table 1
(i.e., until NOSI included) have been computed by using the CK tool [4]. For the HSLCOM and C3,
we used our implementation, while for the readability metrics we relied on the original implemen-
tations of the tools computing these metrics kindly made available by the original authors of the
papers that introduced them [41, 90]. We start by measuring these 18 metrics on each class in each
mined snapshot. Then, based on this information, we compute, for each snapshot, the slope of each
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metric over a window of N preceding commits (we set N = 10 according to a previous work recom-
mending just-in-time refactoring [84]). The slope of a line describes its steepness and in our case
can highlight, for example, continuing degradation of some quality aspects (e.g., a high positive
slope for the WMC metrics indicates a steep increase in complexity for a class over time). Thus,
using slopes we capture the improvement or degradation of quality factors, where the latter may
trigger a refactoring. Clearly, slopes were considered unavailable for the first 10 commits of a class.

Code Design Flaws and Quality Warnings. We consider code design flaws related to the lack
of adoption of good Object-Oriented coding practices (i.e., Spaghetti Code, Excessive Coupling),
to complex/large code components (i.e., Blob Class, Complex Class) as well as other design flaws
and warnings (i.e., Excessive Imports, Too Many Methods) raised by a static analysis tool. We
detect five types of code smells using an implementation of the DECOR smell detector based on
the original rules defined by Moha et al. [77]. The choice of using DECOR is driven by the fact that
(i) it is a state-of-the-art smell detector having high accuracy in detecting smells [77], and (ii) it
applies simple detection rules that allow it to be very efficient. The latter was a strict requirement
for our analysis, since we detected smells in all classes and for all studied systems’ snapshots. In
addition, we also consider 13 flaws from a widely used static analysis tool that does not require
code compilation, i.e., PMD [13]. The set of detected design flaws and code quality warnings is
described in Table 2.

Process-related factors. Besides the product-related factors previously described, we also
study how process-related factors correlate with refactoring. In this case, we extract for each an-
alyzed snapshot the factors summarized in Table 3.

Given a snapshot s;, we compute its distance (in commits) from the previous and next release
(first two rows in Table 3). This to verify the conjecture of Vassallo et al. [104] that refactoring does
not occur immediately before/after a release. This information was retrieved using the GitHub AP]I,
through which it is possible to access all the tags related to a project. Then, we manually looked
at the tags assigned to each project to isolate the ones referring to a new release.

We also consider the change- and fault-proneness of classes. The change-proneness is computed
as the ratio between the total number of lines changed in the class C from the date of its addition
to the project and the total number of commits in which C was changed, until each snapshot s;.

The fault-proneness for C is computed as the number of bug-fixing commits it has been subject
to in the past (i.e., before s;). For each project, we first identified all bug-fixing commits by matching
patterns [52]: “fix” or “solve” or “close” and “bug” or “defect” or “crash” or “fail” or “error.” Then, for
a given class C and for each snapshot s;, we compute the number of bug-fixing commits preceding
s; and impacting C. Section 4 discusses the extent to which this simple heuristic for identifying
bug fixes leads toward imprecisions.

Finally, we consider two metrics capturing the experience of the developers who worked on
the system’s classes. The first metric, named Developer Overall Experience, assesses the experience
of each developer as the number of commits she performed in the past. For each snapshot s; and
for each of its classes C, we extract the list of developers who modified C in the past (i.e., before
s;). For each commit ¢; (with j < i) in which C has been modified, we compute the experience
of the developer authoring c; (i.e., the number of commits she performed before c;). This gives
us a distribution of developers’ experiences, for which we compute the minimum. Indeed, the
minimum represents the lowest experience of a developer who worked on C, and we assume it
might be correlated with future refactoring actions taken on C.

The Developer Class Experience computes a class-related experience: for each snapshot s; and for
each of its classes C, this form of experience is computed for a given developer as the number of
commits impacting C she performed in the past. Thus, it is a more specific version of the overall
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experience. We compute this metric for each s; and C under study in the same way explained for
the overall experience.

2.2.2  Metrics Aggregation and Preprocessing. Since in RQ; we are interested to build an ex-
planatory model explaining which factors correlate with the presence of refactoring actions in a
snapshot, we had to aggregate metrics for all classes involved in each snapshot. For the product
metrics, we compute the maximum slope among all classes involved in the snapshot, except for the
conceptual cohesion (C3) and readability (StrRead and ComRead) metrics, which go in the opposite
directions than other metrics (higher values are better). In such cases, we consider the minimum.
In both cases, the rationale is to identify the “worst case” in a snapshot, which could ideally trigger
a refactoring. As for the DECOR smells, we count the number of classes exhibiting a smell in each
snapshot, while for PMD we sum the number of warnings of each type among changed classes.
Similarly to what done for product metrics, for process metrics, we compute the maximum (e.g.,
maximum number of bugs), except for the experience-related metrics, where we consider the min-
imum, again to consider the worst-case scenario. Finally, release-related metrics do not need to be
aggregated, since they are already at commit granularity.

After that, to avoid multi-collinearity, we use the R redun function of the Hmisc package [57] for
removing redundant variables. The redun function stepwise removes variable, starting from the
most predicable one, until no variable can be predicted with an adjusted R? greater than a given
threshold (0.8 in our study). Once again, we use the whole dataset to perform correlation analysis,
because we intend to build an explanatory model and not a predictive model.

Since the value of our independent variables can depend on projects’ characteristics, and to
properly interpret the importance of each variable in the model, we normalize variable values,
within each project, in the interval [0, 1]. This is done by subtracting the minimum and dividing by
the difference between the maximum and minimum. Finally, to build a model easy to be interpreted,
we invert (i.e., compute 1 — x) the values of variables going toward a different direction than the
others (i.e., those for which the higher the better).

2.2.3  Mixed-model Building. Once variables have been preprocessed, we address RQ; by build-
ing mixed-effect generalized linear models. The model, built using the glmer function of the Ime4
[32] R package, is a logistic regression mixed-effect model where (i) the dependent variable is a
dichotomous variable indicating whether at least a refactoring was performed in a given commit;
(ii) the independent variables (fixed effects) are all the aforementioned ones, after having pruned
out those highly correlating with others; and (iii) the random effect is the project in which the
change occurred. The latter aims at controlling within-project effects, e.g., a project following a
specific development process had better code quality assurance policies than others. To simplify,
our model reports whether the status of the system (as assessed by the used independent variables)
in the snapshot S;_; triggered a refactoring in the subsequent commit C;.

To answer RQq, we report the details of the model, among others the coefficient of each factor
in the model, and the p-value indicating whether the factor is statistically significant or not (for a
significance level of 95%). We also report the odds ratio (OR) that, for a logistic regression model, is
given by e/, where c; is the coeflicient of the ith factor. An OR > 1 indicates that a unity increase
of a variable increases of OR times the chances of a refactoring to occur.

2.3 Qualitative Analysis of Refactoring Discussions in Pull Requests (RQ;)

For the qualitative analysis, we identified PRs likely discussing refactorings using two criteria to be
satisfied: (i) whether a commit is a part of PR or made during its review contains a refactoring iden-
tified by RMiner and (ii) whether the PR title or comments contain refactoring-related keywords.
We used a list of refactoring keywords defined in a previous work [42] (available in our replication
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package [27]) and augmented it with all names of refactorings identified by RMiner [99]. Note that,
while this selection process can generate false positives (i.e., PRs unrelated to refactoring opera-
tions), these will be discarded during the manual analysis and, thus, do not represent a source of
noise for our study.

Once the candidate set of 2,400 PRs has been identified, we created a randomly stratified sample
of 551 PRs. The strata here were represented by the projects, i.e., PRs were sampled across projects
proportionally based on the number of candidate PRs found in the previous step. The total num-
ber of PRs sampled allows us to ensure a significance interval (margin of error) of +5% with a
confidence level of 99%, and feature a total of 8,108 refactoring operations identified by RMiner.
This estimation has been performed using a sample size (SS) calculation formula for an unknown
population [88]:

ZZ
$S=p-(1-p) 27
and SS,4; for a known population pop:

SS
—1°
AT
where p is the estimated probability of the observation event to occur (we assume it to be 0.5 if we
do not know it a priori), Z, is the value of the Z distribution for a given confidence level, and E is
the estimated margin of error (5%).

We then uploaded the sample of PRs on a tagging webapp we used to perform a manual coding
of PRs. The webapp presented to the annotator the following information: (i) the PR title and
hyperlink to the discussion, (ii) the refactoring-related keyword(s) matched in the PR text, and (iii)
the list of refactorings detected by RMiner in commits linked to the PR, as well as the links to the
GitHub diff pages of the commits themselves.

Through the coding app, each annotator could add one or more tagging items, containing the
following information: (i) the type of refactoring action performed and discussed in the PR, or
whether the change discussed was related to a combination of refactorings; (ii) whether the refac-
toring was the original intent of the PR, whether it happened as a consequence of the PR discussion
or whether it happened accidentally because of another change; (iii) whether the refactoring was
tangled with other changes, or if it was the only purpose of the PR; and (iv) finally, a tag indicat-
ing the motivation behind the refactoring, as it could be inferred from the inspection of the PR
title/description, from its discussion, and from the commits related to it, looking at commit mes-
sages and, when needed, code diff. Note that each annotator could add more than one motivation
for each PR (e.g., one for each refactoring operation, or even more than one for the same refactor-
ing). To assign the tag describing the motivation, the annotator could choose an available tag in a
drop-down menu (from those previously created by other annotators or by herself), or add a new
one if no tag was fitting the specific case. If an annotator realized that the PR discussion was not
related to refactoring, then the PR was tagged as “false positive.”

Six of the seven authors took part in the annotation process. The webapp we developed took
care of automatically assigning each PRs to at least two of the involved annotators. We collected a
total of 1,223 tags each one reporting a motivation for a refactoring (or combination of refactorings)
performed in a PR. After each PR was tagged by two annotators, three of the authors jointly worked
on the available tags to perform a card sorting activity [94] aimed at merging duplicates (i.e.,
similar tags having the same meaning), and start grouping tags into categories. Then, they created
a first taxonomy describing the different purposes of refactorings by only using the 699 tags for
which there was no conflict (i.e., the same tag was used by the two annotators for motivating
the refactoring observed in a PR). After a first draft of the taxonomy was produced, two different

S'Sadj =
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Table 4. Generalized Mixed Effect Logistic Regression Model: Diagnostics, Residuals, and Random Effect

Diagnostics
AIC BIC logLik deviance df resid.
21,071.5 21,362.4 —10,499.7 20,999.5 23,860
Scaled residuals
Min 1Q Median 3Q Max
—2.0565 —0.5256 —0.3867 —0.1094 11.3848
Random effects
Groups Name Variance Std.Dev.
ProjectName (Intercept) 1.549 1.245

authors refined it, by renaming some categories and moving sub-categories through the taxonomy.
Once the final taxonomy was produced, three authors jointly discussed the conflicting cases in the
categorization (524 of 1,223 tags) and assigned them to suitable taxonomy categories, creating new
ones when needed, and ensuring a consistency of category naming.

To address RQ,, we report and discuss the taxonomy of refactoring motivations inferred as
previously explained. In particular, we discuss the various categories, highlighting the percentages
of PRs belonging to the category, reporting some examples, and highlighting the implications
resulting from our empirical findings.

3 RESULTS

In the following, we report and discuss the results addressing our RQs (Section 2).

3.1 Which product and process-related factors relate with an increase of refactoring
operation chances?

Over the 213,102 snapshots analyzed, RMiner identified a total of 287,813 refactoring operations.
More in details, our dataset contains 35,560 commits (~17%) with at least one refactoring operation.
If we exclude renaming operations (Rename Method and Rename Class), then RMiner found a total
of 209,385 refactorings in 28,716 different snapshots (14%).

Table 4 and Table 5 reports the results of the logistic regression mixed-effect model. More specif-
ically, Table 4 reports the model diagnostics (Akaike Information Criterion (AIC) [23], Bayesian
Information Criterion (BIC), log likelihood, deviance, and degree of freedom residuals), the scaled
residuals, and the random effect (project estimate). Concerning the model fitting (Table 4), we
tried different models, namely logistic (i.e., the one reported, AIC = 21,071), linear (AIC = 22,565),
and Poisson (AIC = 22,560). Also, although the analysis performed using the redun function al-
ready used a goodness-of-fit to iteratively remove variables, we experimented logistic models us-
ing structural metrics only (AIC = 89,751), conceptual metrics only (AIC = 89,475), code design
flaws only (AIC = 179,528), and process metrics only (AIC = 23,583). Ultimately, the comprehen-
sive logistic regression model we report is the one with the smallest AIC among those considered.

Table 5 reports the OR, estimate, standard error, z-value and p-value for the various factors we
considered. We report in bold the coefficient for which there is a statistically significant correlation.
Metrics that have been inverted (e.g., C3) are named with the prefix “Lack.”

Looking at code quality metrics, we found that the lack of structural readability plays a sig-
nificant role: lack of structural readability [41] increases the odds of refactoring (OR = 3.14). At
the same time, ComRead readability metric and LackC3 show a marginal significance (p-value =
0.02 and p-value = 0.04), respectively. In particular, looking at the ComRead readability metric
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Table 5. Generalized Mixed Effect Logistic Regression Model: Effect of Considered Factors

Metric OR Estimate Std.error z-value p-value
(Intercept) 0.00 =7.52 0.52 —14.50 <0.01
LackStructRead 3.14 1.14 0.38 3.05 <0.01
LackComRead 2.68 0.99 0.41 2.42 0.02
LackC3 1.87 0.63 0.30 2.06 0.04
CBO 1.02 0.02 0.03 0.66 0.51
WMC 0.98 —0.02 0.01 -1.57 0.12
DIT 1.17 0.16 0.12 1.39 0.17
> NOC 0.95 —0.06 0.28 —0.20 0.84
% RFC 0.98 —0.02 0.02 —1.05 0.29
5 NOM 0.88 —0.12 0.05 —2.54 0.01
< NOPM 1.22 0.20 0.06 3.19 <0.01
NOSM 0.91 —0.09 0.12 —0.76 0.45
NOF 1.12 0.11 0.08 1.34 0.18
NOSF 0.89 —-0.11 0.13 —-0.88 0.38
NOSI 1.01 0.01 0.07 0.12 0.90
LOC 1.00 0.00 0.00 0.91 0.36
HsLCOM 1.94 0.66 0.29 2.28 0.02
IsGodDecor 1.12 0.12 0.14 0.81 0.42
IsCDSBPDecor 0.90 -0.11 0.15 -0.71 0.48
v IsComplexDecor 1.03 0.03 0.14 0.23 0.82
E IsFuncDecDecor 0.76 -0.28 0.25 -1.11 0.27
['; IsSpaghCodeDecor 1.10 0.09 0.13 0.69 0.49
0 AvoidDeeplyNestedIfStmts 0.92 —-0.09 0.20 —-0.43 0.67
&  CouplingBtwObjects 0.73 —-0.31 0.22 -1.42 0.16
a Excessivelmport 1.04 0.04 0.20 0.18 0.86
T ExcessiveMethodLength 0.96 —-0.04 0.23 -0.18 0.85
©  ExcessiveParameterList 1.28 0.25 0.20 1.22 0.22
TooManyFields 1.08 0.08 0.20 0.40 0.69
TooManyMethods 0.66 —0.42 0.29 -1.42 0.16
LackGeneralExp 1.26 0.23 0.10 2.30 0.02
2 LackFileExp 8.93 2.19 0.13 1645  <0.01
§ FilesRelatedTolssueFix 2.09 0.74 0.07 10.12 <0.01
A& AvgLinesImpactedInCommit 1.93 0.66 0.17 3.96 <0.01
DistancePreviousRelease 1.13 0.12 0.08 1.59 0.11
DistanceNextRelease 1.43 0.36 0.09 4.12 <0.01

combining structural and textual features [90] the OR is 2.68, while classes showing a decrease in
their conceptual cohesion (LackC3) have 1.87 times higher odds of being refactored.

Among the structural metrics, we found that NOM, NOPM, and HsLCOM have a statistically
significant effect (marginally significant for HsLCOM), although the OR for NOM and NOPM is
close to one. Instead, the OR for HsLCOM is 1.92, indicating that, as expected, a lack of cohesion
increases the odds of inducing a refactoring operation.

In conclusion, from our analysis it results that conceptual and readability metrics play a more
important role in the model than structural metrics. This finding is aligned with previous work
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aimed at applying conceptual metrics to suggest software refactoring [33] and modularization [38],
and with findings of the seminal work about C3, indicating that such a metric is complementary
to structural metrics [75].

None of the design flaws plays a statistically significant role. Although we expect that developers
take care of removing smells, or try to “make static analysis tools happy,” and although previous
work has pointed the role of refactoring for improving code having a poor quality, e.g., overly
complex code [39, 60, 91, 105], an evolutionary study on code smells indicate that smells mostly
disappear when the source code is being rewritten, and only in less than 10% of the cases because
of a refactoring action [101].

Interestingly, process-related metrics are highly representative if compared to product-related
metrics: Five of the six considered process-related metrics are statistically significant. Previous bug
fixes play a role: A unit increase of the FileRelatedTolssueFix factor results in 2.09 higher odds of ap-
plying a refactoring in the system. Not only classes subject to bug fixes are likely to be fault-prone
in future [63, 79] but, since they are subject to (often quick-and-dirty) patches, they may neces-
sitate refactoring actions. For related reasons, classes changing a lot (AvgLinesImpactedInCommit)
also need to be refactored, although the OR is smaller (1.93).

Moving the attention to the metrics capturing the developers’ experience, the Developer Class
Experience (LackFileExp) has the highest OR. A unit increase of this factor related to the lack of
specific experience (in terms of past commits) of developers that have recently modified a class,
and therefore a decrease of experience increases the odds of refactoring by 8.93 times. In other
words, changes applied by developers with little knowledge about a code component increase the
need for restructuring it in the future. The general experience also plays statistically significant
role, although the OR is relatively small (1.26).

Finally, looking at the proximity to a release (DistanceNextRelease and DistancePreviousRelease),
the mectrics indicate that refactoring operations are applied to the system far from a release of
the system. More specifically, increasing the number of commits to a subsequent release, there are
1.43 higher odds of applying a refactoring. However, results are not significant while looking at the
number of commits from a previous release (i.e., p-value = 0.11). Our findings confirm previous
literature [61, 104], since developers are aware that some kind of refactorings may result in the
introduction of new faults [34] and in any case, refactoring represents a costly and risky opera-
tion [61]. For this reason, it is not very common to apply refactoring close to a new release of the
software product. Furthermore, once released a new version of the software, developers likely tend
to focus on bug-fixing activities instead of applying refactoring operations. In summary, based on
our observations, refactorings are less likely to occur either immediately before major releases
(developers focus on new features and, for what possible, on reliability of what they release), and
immediately after (developers work on bug fixes). Instead, refactorings are more likely to happen
in-between. Once again, note that this conclusion is based on purely observational data, and dis-
tance from the next release is unlikely to be used for prediction purposes (developers do not know
when the next release is, unless a project or organization adopts very rigid release timelines).

We conclude RQ; stating that, on the one hand, by observing product metrics, only code read-
ability plays a significant role. On the other hand, process-related metrics play a significant role.
These are metrics related to previous changes and bug fixes, and to the experience of recent change
authors.

3.2 What are the reasons for performing a refactoring operation?

Before digging into the results Table 6 reports statistics about the refactoring operations we found
in the analyzed PRs. Note that (i) several refactorings can be applied in one PR, therefore the
number of refactorings is higher than that of PRs and (ii) we only list refactoring operations we
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Table 6. Statistics of Refactoring Operations Labeled in the 551 Analyzed PRs

Refactoring operation | Freq. When? Tangled
Orig. intent Collateral After discuss. | Yes No
Combination of refact. 578 65% 3% 32% | 86% 14%
Extract operation 112 62% 3% 35% | 62% 38%
Rename method 69 47% 4% 49% | 59% 41%
Rename class 53 39% 6% 55% | 56% 44%
Move class 39 64% 8% 28% | 49% 51%
Extract variable 29 52% 35% 14% | 72% 28%
Rename variable 29 35% 14% 52% | 83% 17%
Extract interface 27 59% 11% 30% | 59% 41%
Rename attribute 22 35% 8% 57% | 44% 56%
Extract and move 22 68% 0% 32% | 55% 45%
Rename parameter 19 69% 5% 26% | 37% 63%
Move attribute 15 53% 14% 33% | 73% 27%
Move operation 13 69% 0% 31% | 39% 61%
Extract superclass 10 70% 10% 20% | 80% 20%
Overall 1117 60% 5% 35% | 73% 27%

The “Freq.” column reports the number of times that the annotators defined a tag explaining the rationale behind each
specific type of refactoring operation. The total number of 1,117 tags is the result of the 1,223 tags we defined, excluding
the 94 “unclear” (i.e., cases in which the annotators did not manage to identify the rationale for the refactoring) and
12 “false positives” (i.e., PRs that were unrelated to refactoring).

observed at least 10 times. However, the overall number of refactorings (1,117) also includes the
instances related to refactoring types we do not show in Table 6 (since having fewer than nine
occurrences). In most cases, developers do not discuss a specific refactoring operation. Instead,
they rather provide a rationale for a combination of refactorings (~52% of the cases). Then, extract
operation (~10%) and renaming refactorings in general (~17%, in total) are the ones more discussed
by developers. Surprisingly, we found that only a small percentage (5%) of refactorings were done
collaterally, i.e., without mentioning them at all. Instead, many of them were done as the original
intent of the PR (~60%) or after discussing with other developers (~35%).

Some refactoring operations, such as extract variable and rename variable, were performed col-
laterally more often, given their “local” nature: A variable name only matters in the methods in
which it is declared, while a class name can possibly impact the whole system. It is worth noting
that developers perform most of the renaming operations after they receive feedback from their
peers. This shows that names are often discussed in PR reviewing activities. Finally, in line with
Murphy-Hill et al. [80], we found that about a fourth of the refactorings are tangled with other
changes.

Figure 2 depicts the taxonomy of refactoring motivations we have identified. It comprises six
root categories: (i) Improve Code Design groups refactoring operations targeting an improvement
of the system design, e.g., by fostering the reusability of code; (ii) Improve Understandability &
Readability includes refactorings aimed at reducing the effort to read and understand code, e.g.,
by renaming identifiers; (iii) Improve Quality of Test Code groups all refactorings performed to im-
prove the quality of the test code or ease the testing process; (iv) Prevent Bugs identifies refactor-
ings performed to prevent the future introduction of bugs; (v) Preparing Code for Changes includes
refactorings performed in preparation of other changes, e.g., refactoring the code before imple-
menting a new feature; and, (vi) finally, Other Motivations groups those motivations that cannot
be classified into one of the previous categories.
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It is important to point out that some of the categories of the taxonomy are not mutually ex-
clusive. For example, a refactoring aimed at improving code readability, is also likely to improve
maintainability. However, readability can be improved for multiple purposes (e.g., simplify test-
ing), and, for this reason, we separated these categories. We acknowledge that other choices in
terms of categories and assignment of instances to these categories are possible. Also, the hierar-
chical organization of the categories only indicates that child categories are specialization of their
parent categories, while it does not imply that two categories at the same hierarchy level represent
motivations at the same level of abstraction (e.g., Improve Inheritance and Foster Code Reuse appear
at the same level, but the former is a more concrete motivation as compared to the latter).

Figure 2 also reports for each category of “motivations” the number of PRs in which we found
related refactoring operations. For readability purposes, we only report these numbers for the
main categories. Note that the number for a parent category does not correspond to the sum of
the children, because some PRs were only assigned to the parent category, as the motivation was
not specific enough. Also, the sum of refactoring instances in all root nodes does not correspond
to the total number of 551 manually analyzed PRs, because some PRs comprise refactorings falling
into multiple categories, and we labeled some refactorings as Unclear (94) and discarded 12 PRs as
False Positive.

We compared our taxonomy with the list of 44 motivations derived by Silva et al. [91] for
12 frequently applied refactoring operations (see Tables 3 and 4 in Reference [91]). In particu-
lar, two of the authors tried to map Silva et al.’s motivations into our taxonomy, to see whether
they were covered or not. Note that the mapping is not one-to-one, since one motivation identified
by Silva et al. [91] may be mapped to more than one category in our taxonomy, as well as one of
our categories can group more than one of their motivations. This is expected, since their motiva-
tions and the categories in our taxonomy have been derived by using two different methodologies.
Indeed, while we have categorized the possible motivations behind the application of refactoring
operations by looking at the discussions in PRs, Silva et al. [91] have asked the reasons behind
specific instances of refactoring operations to the original developer who has applied it.

Only 3 of the 44 motivations from Silva et al. [91] cannot be mapped in our taxonomy. The
main reason is that for these three instances (i.e., Enable recursion, Convert to top-level container,
and Convert to inner class) it was unclear to us the actual motivation behind the refactoring. For
example, enabling recursion could be done to improve performance as well as to improve code
readability. However, this high overlap between the two sets of motivations (i) validates and gen-
eralizes the work done by Silva et al. and (ii) supports the comprehensiveness of our taxonomy.
As reported in Table 7, our taxonomy features 16 inner categories that are not covered in Ref. [91]
(e.g., To Ensure Better Mapping Between Test And Production Code), 3 inner categories that are only
partially covered (e.g., Preparing Code for Changes), and 6 inner categories (e.g., Forster Code Reuse)
that are completely covered. We provide in our replication package [27] a spreadsheet reporting
the mapping between the two taxonomies.

In the following, we discuss each root category, reporting interesting examples and outlining
implications for researchers and practitioners (indicated with the Q icon), as well as highlighting
the differences with the taxonomy provided by Silva et al. [91]. The complete list of manually
analyzed PRs together with their refactorings/assigned tags is publicly available [27].

Improve Code Design (425 instances). Unsurprisingly, a large proportion of the analyzed
refactorings are aimed at improving code design from several perspectives [55]. In 58 of these,
the refactorings are aimed at making source code easier to be reused (see Foster code reuse in
Figure 2). In 42% of these cases, this was accomplished through a combination of several refactor-
ing operations, while in the remaining 58% specific refactorings were applied in isolation. When
this happened, almost always (91%) an operation aimed at extracting a code component from an
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Table 7. Comparison with Refactoring Motivations Found by Silva et al. [91]: T T Highlights
a Perfect Match (the Motivation Also Emerges from Their Study); T Highlights a Partial
Match (We Found Additional, Specific Motivations); | | Stands for a Mismatch
(the Motivation Was Not Found in Their Study)

Root Category Inner Category Match

Foster code reuse ™
) Improve inheritance T

Improve Code Design .
Improve encapsulation 1l
Improve maintainability ™
Improve namin,

Improve Understandability & Readability P & T
Cleanup code Ll
To ensure better mapping between test and production code | | |
To simplify testing activities T

I ity of Test Cod To automate tests 1l

mprove Quality of Test Code To remove flaky tests 1l
To ease locating tests 1!
To simplify testing for client projects 1l
For implementing a new feature ™
For going open source

Preparing Code for Changes gomg op . . L
For future refactoring/major change 1l
Refactor modules to prepare for next release 1l
Promote type safety 1l

Prevent Bugs . .
Improve exception handling 1l
To create separate Maven artifacts Ll
To promote API compatibility T
Tt t third-party tool

Other Motivations ° stp?r Hrepatly 1o%s e
To simplify API usage 1l
To allow serialization Ll
To improve performance T

existing one was applied. In particular, extract method operations were performed in 70% of cases,
to extract a small piece of functionality from an existing method thus avoiding code duplications
and fostering the reuse of the extracted code. For example, during the code review of the PR #626 in
the nakadi project [20], the reviewer observed that two of the implemented methods were “almost
the same except the very last line” and suggested to “extract a helper method” in such a way to reduce
code duplication and also allow other methods, in future, to reuse the same functionality. This was
accomplished through an extract method refactoring. In other cases, the refactoring was more sub-
stantial and directly justified by the need for reusing specific pieces of functionality, as discussed
in the PR #4388 of the dropwizard project [6]. Here the contributor explains, when submitting the
PR: “I was looking at starting/stopping a Dropwizard app in Cucumber tests and DropwizardAppRule
has all the functionality I need but obviously it doesn’t expose startIfRequired and stop methods. I'd
happy to extract a DropWizardAppTestSupport class from DropwizardAppRule.” After approval, this
triggered an extract classrefactoring. This last example is interesting for several reasons. @ First, ex-
tract class is a non-trivial refactoring possibly having substantial ripple effects in the system, with
the obvious possibility of introducing bugs. For example, the discussed commit impacted a total
of 499 lines of code, thus showing that code reuse is a strong motivation for triggering refactoring
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operations. Second, while many approaches to identify extract class refactoring opportunities have
been proposed (see, e.g., References [35, 53]), they focus on the identification of complex classes
implementing several responsibilities (i.e., God or Blob classes [40]) that could be split into sev-
eral classes. The class subject of the extract class refactoring (i.e., DropwizardAppRule) is a fairly
simple class composed by 156 effective LOC (excluding comments and blank lines) that is unlikely
to be reported by refactoring recommenders as a candidate for extract class refactoring. To cope
with these cases, these recommenders could be combined with clone detectors [89] to factor out
a class to be used by multiple other ones. Note that these “special” cases should complement the
more standard refactoring recommendations done for complex and low-cohesive classes. Indeed,
as shown in our RQy, classes characterized by a low cohesion as assessed by the C3 and HsSLCOM
metrics are more likely to be subject to refactoring operations.

Many (338) of the refactorings performed in the code design taxonomy aimed at Improve Main-
tainability (see Figure 2). In this category, refactorings aimed at improving the modularization
were often implemented through simple move class refactorings, while we rarely observed mas-
sive package reorganizations (7 cases). ¢ This is in line with recommendations from previous
literature, suggesting that approaches performing big-bang remodularization through clustering
algorithms have limited applicability, and techniques suggesting fine-grained and incremental ad-
justments to software modularization should be preferred [56, 81]. Also, it was interesting why
developers decided to perform remodularization. For example, in some cases move class refactor-
ings are performed to group, in specific “API-related” packages, utility classes potentially useful
in different parts of the system and/or to third-party components, e.g., PR #324 from DSpace “I
suggest to move this class in dspace-api as it will be useful to port this feature to JSP UI as well” [8].
While these changes might look suboptimal from the cohesion-coupling point of view (i.e., they
could generate a low-cohesive package) they are justified by a clear rationale. @ As also observed
for the approaches automating extract class refactoring, tools recommending modularization solu-
tions (see, e.g., References [28, 65, 73, 86]) just strive to maximize the cohesion-coupling tradeoff.
Given the availability of historical data, they could also learn from previous changes what a mean-
ingful modularization is from the developers’ perspective. While learning code changes is already
an active research field [102], no previous work has attempted to design refactoring recommenders
learning from developers’ activities what a meaningful refactoring is in a given context.

Removal of code clones is one of the two motivations behind the refactorings in the Adhere to
DRY principle (Don’t Repeat Yourself) subcategory (child of Remove Code Smell), together with the
removal of unnecessary code. Note that this category is strictly related to the Foster code reuse one.
Indeed, some of the analyzed PRs fall into both these categories, because factoring out duplicates
also creates a more generic code element (e.g., a class or method) that can be further reused. For
example, PR #366 in the fineract project [2] can be seen as an example of improving reusability
by adhering to the DRY principle, since it features an extract method refactoring suggested by the
reviewer and avoiding code duplication while allowing the reuse of a piece of functionality now
embedded in the extracted method. @ This confirms once more the relevance for practitioners of
clone detectors [89] as well as of refactoring tools aimed at removing clones [100] and encourages
their use in the Continuous Integration (CI) pipeline, as advocated by Duvall et al. [50].

Concerning the removal of unnecessary code, besides cases simply related to removing un-
used imports, we found refactorings performed to remove redundant code (e.g., PR #1481 from
testng [3]. ¢ While some work has investigated the automatic identification of redundant code in
software systems [59, 70], the provided support is still very limited to specific redundancy cases
(e.g., those related to API usages [59]) or programming languages (e.g., LISP [70]). The 55 cases
related to refactorings motivated by the removal of unnecessary code suggest room for more re-
search in this field.
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Concerning the operations targeting a better distribution of the responsibilities across code com-
ponents, one very interesting example comes from the DSpace project (PR #1083 [7]). This PR im-
plements a massive refactoring aimed at ensuring a better “separation of concerns/responsibilities”
for an API module, and has been subject to votes by the community, because the refactored API was
not backward compatible. Despite this issue, the merging has been approved thanks to the numer-
ous positive advantages brought by the refactored APL: “makes it much easier to achieve future goals
on our Roadmap, especially, moving us toward potentially better support of third-party modules,” “it
cleans up one of the messiest areas of our existing API[...]”.Q This case shows the non-trivial trade-
offs that developers should consider in case of massive refactoring: for example, smartphones have
limited battery life and they require software optimized to reduce the energy consumption. State-
of-the-art refactoring recommenders [35, 98] ignore the heterogeneity of modern software, and the
different priorities that non-functional requirements, possibly more important (e.g., maintainabil-
ity, performance, backward API compatibility) may have in different contexts. Future work should
consider integrating into these recommender systems the possibility to define a priority list of non-
functional properties that developers are or are not willing to sacrifice when applying refactoring.
This would allow generating more meaningful and sensible refactoring recommendations.

The two sub-categories described above (Foster code reuse and Improve maintainability), i.e., the
ones highly represented in our study, have a complete matching with the motivations identified
by Silva et al. [91]. This confirms their findings, and stresses once more the importance from the
developers’ perspective of improving both the reusability and maintainability of code, especially
when discussing whether to accept or not a PR.

Other less represented subcategories in the Improve code design taxonomy include refactorings
aimed at improving the usage of inheritance (21 instances) and the ones working on the encap-
sulation (5). In these cases, considering the low number of instances belonging to each category,
it is quite obvious that while comparing with the motivations by Silva et al. we found that these
reasons did not emerge from their study. The only exception is the one related to inheritance that
is only partially covered, as shown in Table 7.

Improve Understandability and Readability (468 instances). The majority of refactorings
we found in the manually analyzed PRs aim at improving understandability and readability of
source code. This supports the findings of RQ;, which indicate a significant correlation (and high
OR) of readability metrics with refactoring operations. In this category, 146 refactorings were done
to improve naming. The observed renamings had a variety of motivations (see Figure 2), ranging
from fixing typos to keeping naming consistency throughout the project. Naming decisions were
often carefully discussed, showing their importance for developers. An interesting example of dis-
cussion about naming is the PR #150 of the optaplanner project [11]. The original intent of the
PR was to add a new feature, but the author explicitly asked for feedback about the naming of
a new interface he extracted: “We should discuss the naming and the usage of the SolverProblem-
BenchmarkResult interface.” Such a name was changed after the discussion: “renamed to Bench-
markResult as agreed in a meeting.” In the same PR the developers also discussed several other
names in the contributed code. For example, the PR author introduced a boolean field named
hasNonDefaultSubSingleCount; another developer asked why such a value was introduced, since
the name was not clear enough. The discussion triggered not only a renaming operation, but also
a type change (from boolean to integer) to represent additional information that could be useful
in future: “maximumSubSingleCountis the best name here, as it gives us more potential information
for the future at no cost”.

We also found cases of renaming aimed at better reflecting the code responsibility (38). A rep-
resentative example is in PR #251 of the kafka-connect-elasticsearch project [5], in which
one of the reviewers suggested to rename a test method to something very specific and clearly
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depicting the responsibility of the test case: “you could change the name of the test method to some-
thing like testCreateAndWriteTolndexForTopicWithUppercaseCharacters. I like test names that read
like the condition they are testing”. Other cases aimed at removing linguistic antipatterns defined
in the literature by Arnaoudova et al. [31] and known to have negative effects on the understand-
ability of code [51]. @ This is only one of the studies linking the poor quality of identifiers to
difficulties experienced by developers in code comprehension [48, 67, 68, 69, 97]. Our findings
show that developers care about the quality of identifiers and carefully discuss their choice.

@ Most of the rename refactoring recommendation approaches aim at fostering the usage of
consistent naming [24, 71], while only a single attempt has been done, to the best of our knowl-
edge, to recommend rename method refactorings with the goal of better reflecting the responsibil-
ities implemented by the code [25]. Our results show that more effort in this direction is needed,
since this is the scenario in which developers more frequently perform rename refactorings. Also,
Q@ the high number of rename refactorings implemented as a consequence of code review indi-
cates the possibility to mine this data to evaluate automated rename refactoring techniques [24,
71]: the originally submitted identifier represents an opportunity for rename refactoring while the
one adopted after the code review process can be used as reference of a good refactoring. This
would avoid the evaluation of the rename refactoring techniques in artificial scenarios.

Looking at Table 7, and considering that developers can modify the names of packages, classes,
variables or methods for different reasons, we can state that our Improve Naming category is only
partially covered by the motivations reported in the previous study by Silva et al. [91]. For instance,
while both studies identify the need for adhering to naming conventions, for keeping consistency
in naming, or for better representing code responsibilities, in our taxonomy we also found cases
where the renaming occurs to fix typos, shorten identifiers and expand abbreviations. @ The latter
challenge (i.e., expansion of abbreviations in code identifiers) has been vastly investigated in the
software engineering research literature (see, for example, the works by Lawrie et al. [66]), with
approaches proposed and empirically evaluated. However, to the best of our knowledge, there are
no ready-to-use tools that, for example, can be integrated in a CI pipeline and can recommend to
developers identifiers to expand at commit time. The implementation of such a tool is a clear next
step to perform in this research field.

We also found several refactorings implemented to make the source code less confusing. Such
changes involved improvements to both names and structural aspects. For example, we found
an interesting example in PR #599 of the htsjdk project [15]. Note that the refactoring per-
formed in this PR is an extract interface rather than a rename, that resulted in the interface
CRAMReferenceSource implemented by the class ReferenceSource. The main goal of the refac-
toring was to improve code reusability: For this reason, we include such a case in our taxonomy
under the Foster code reuse category. However, it is interesting to discuss this refactoring in the
context of renaming: during the code review process, one of the reviewers argued that the chosen
names were confusing, because he expected an inheritance relationship in the opposite direc-
tion (i.e., CRAMReferenceSource implements ReferenceSource) by reading the names alone. As
a consequence, ReferenceSource was renamed to CRAMReferenceSourceImpl, making the rela-
tionship between the two classes more evident. § This naming issue could be characterized as a
sort of linguistic antipattern, and shows that the original catalog of these antipatterns defined by
Arnaoudova et al. [31] could be expanded by analyzing recommendations provided by reviewers
in a code review process.

Finally, we found many cases in which the developers made more generic clean-ups in the code
(162 instances), to improve the coding style and, in some cases, the quality of error messages and
logging. Some of these changes were performed as a result of tools’ recommendations. For example,
the PR #346 of the spring-amgp project [18] fixes warnings raised by SonarQube. @ This suggests
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that developers are willing to fix issues identified by automatic tools. However, in our sample of
PRs, SonarQube was the only tool mentioned in many discussions. Note that a specific analysis of
the extent to which static analysis tool warnings are removed was not in scope of our work (but
rather addressed in related literature [47, 62, 92]); this is the reason why, in RQ1, we only considered
two tools—DECOR and PMD—that could raise warnings that triggered refactoring operations.

More than 60% of the clean-up operations were done as part of the original intent of the PRs.
Differently from other categories, we found very little discussion among developers regarding
clean-ups. This is likely due to (i) the limited impact that these clean-ups generally have; and
(ii) a general agreement on the need for improving code quality.

Prevent Bugs (26 instances). These refactorings are motivated by the will to prevent bugs,
for example through a better exception handling or by promoting type safety. Note that these
are changes that preserve the program’s behavior. For this reason, we contemplated them in our
taxonomy, even if they do not belong to the canonical cases of refactorings, such as those defined by
Fowler [55]). This is why those categories are completely uncovered in the 44 motivations provided
by Silva et al. [91]. Indeed, they studied the reasons behind specific refactoring operations that are
detected by RMiner and inline with those defined by Fowler [55].

Some PRs are explicitly motivated by the will of improving the exception handling mechanism.
This is the case for PR#933 of the nakadi project [21], in which the developer implements sev-
eral different refactorings (e.g., rename class, move class) to improve the overall handling of the
exceptions in the project. Other PRs, instead, simplify the handling of exceptional conditions. For
example, in PR#1067 from the htsjdk project [14], the developer fixes a possible issue caused by the
invocation of the method mFile.getSource() within several exception messages. Indeed, in spe-
cific cases the mFile object could be null, leading to the throwing of a NullPointerException.
For this reason, the developer implemented an extract method refactoring, creating the method
getSource(), which returns the value of mFile.getSource() when mFile is not null, and a
constant string otherwise. This allowed to easily prevent NullPointerException by replacing
the many usages of mFile.getSource() with an invocation to the newly created getSource()
method. @ This is an interesting application of extract method refactoring, since it aims at refac-
toring a very small clone, i.e., a method invocation reused, in the same way, in different parts of
the code. Extract method is widely applied in the refactoring of clones [64]. However, the focus
is usually on more complex clones sharing several statements, rather than on the identification of
refactoring opportunities that, as in the discussed case, involve few code tokens but can have a
positive impact on the reliability and maintainability of the system.

Another very interesting example is the PR#238 from the minio-java project [12]. Here the de-
veloper replaced general, unchecked exceptions such as NullPointerException, with more spe-
cific and checked ones. With “unchecked,” we refer to those exceptions that in Java can be thrown
without declaring them in the method signature. For example, in the specific case of PR#238, the
method getClient of the class Client was throwing a NullPointerException in specific sit-
uations: note that this was an intended behavior of the method, i.e., there was an explicit throw
new NullPointerException() in the code. However, in the method signature the only visible ex-
ception was MalformedURLException. Through the implemented changes, including class rename
refactoring, the more general exceptions have been specialized (e.g., to ClientException in the
case of the getClient method), forcing the exposure in the signature of the thrown exception. This
has the double effect of (i) giving developers compilation errors if they do not catch the thrown
exception, thus preventing bugs and (ii) using more expressive exception names. Q Note that the
usage of unchecked exceptions in Java code should not be considered as a “bad smell,” since, in
general, unchecked exceptions should be used to reveal bugs, while checked exceptions to throw
errors that the program should handle [45]. However, the misuse of unchecked exceptions where
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checked ones are needed can lead to higher chances of introducing bugs (as in the case of PR#238).
The automatic identification of these situations is, to the best of our knowledge, a problem still
not faced in the research literature.

Preparing Code for Changes (41 instances). This category includes refactorings facilitating
the implementation of new features or of other planned activities. Refactorings preparing for future
changes are usually implemented in dedicated PRs including major refactorings.

Looking at the comparison highlighted in Table 7, it is possible to state that our taxonomy pro-
vides more insights compared to the list of motivations in the previous study. Indeed, the category
Preparing Code For Changes contains some motivations already highlighted in Reference [91] while
others missed such as the need for refactoring operations aimed at moving to open-source. An in-
teresting case in this category is represented by PR #317 of the sagan project [17]. As mentioned
in the title, the goal of the PR is to “refactor in preparation for open source.” Note that this is kind
of an exception in our taxonomy, and we decided to put it into the Preparing Code for Changes
category just because open sourcing a project is, in some way, a decision taken to foster the future
evolution of the project. Code refactoring is one of the action items in a checklist defined in issue
#179 for preparing the project to be open-sourced [16]; other action items included, for example,
the introduction of installation and configuration instructions. @ This suggests that an appropriate
code cleanup, including refactoring, should be part of packaging checklists when putting a project
in the open-source.

Another example of refactoring performed to accommodate other changes is in PR#136
of the zhcet-web project [22], where the developer extracted the class CryptoUtils from
SecurityUtils to accommodate the implementation of new functionalities (e.g., the decrypt
method) in a suitable class (i.e., CryptoUtils).

@ Tools supporting preemptive refactoring are lacking in the literature. Indeed, the only effort in
this direction is the work by Pantiuchina et al. [84] in which, however, the focus is on identifying
classes that will be affected by code smells in the future, thus recommending them for a preemptive
refactoring action. ¢ Our manual analysis indicates that a novel family of recommender systems
able to suggest developers how to refactor the code to “accommodate” the implementation of a
given change request could be valuable.

Improve Quality of Test Code (49 instances). As the production code might be in need for
refactoring, this also holds for test code [103]. The quality of the test code is also assessed in the
context of PR discussion and code reviews, as observed by Spadini et al. [93]. We found 49 test code
refactoring cases, 37% of which performed with a specific type of refactoring operation, and 63%
with multiple operations. The observed refactorings include changes similar to those performed
on production code, e.g., better distribution of responsibilities to have a better mapping between
test and production code, see, e.g., PR #1071 in the error-prone project [10] in which the author
comments “[... ] separate the tests into logical classes.”

Other cases we found concern the removal of flaky tests that introduce non-determinism in test
outcome [76]. In the microprofile-fault-tolerance project, the PR #363 [9] aims at removing
flaky test: “The tests testCircuitInitialSuccessDefaultSuccessThreshold and testCircuitLateSuccessDe-
faultSuccessThreshold were moved to an independent test to avoid dependencies between tests that use
the same bean [...] that can generate possible failures when the circuit breaker leaves open [...].”

More interesting and specific for test code are the refactorings performed to improve testabil-
ity. In PR #73 of the WPS project [1] a developer performed an extract class refactoring in pro-
duction code motivated by the will of simplifying integration testing: “The functionality to create
a GTVectorDatabinding out of shapefiles was removed from the GenericFileData class and moved
to a new GenericFileDataWithGT class. Due to this change, the processes used for the integration
tests do not depend on GeoTools anymore [...] also the tests now use only local resources.” Q This
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example shows how refactoring performed on production code can have an impact on many soft-
ware quality aspects (in this case, testability). Cases like this one suggest to always ponder the pos-
itive and negative impacts of refactoring beyond maintainability, e.g., some refactoring actions can
aid testability, while others might improve maintainability at the cost of testability. ¢ Clearly, con-
sidering this aspect in the context of a refactoring recommender is far from trivial, given the need
for automatically assess the testability of a given component. Besides, the presence of refactorings
specifically aimed at improving testability shows room for approaches aimed at recommending
such kind of operations.

While the motivations of refactorings for simplifying testing activities were already presented
in the work by Silva et al. [91], our taxonomy provides other new categories such as those aimed
at removing flakiness, at automating testing activities, or at improving the overall testability of the
project under development.

Other Motivations (108 instances). In this category, we put all motivations that did not find
their place among other root categories.

Thirty-seven PRs were performed to improve software performance. This is not surprising and
in line with Fowler [55], who observed that the internal program structure is closely related to
its performance due to better optimization opportunities. Moreover, the latter also emerges from
the motivation provided in the previous study by Silva et al. [91]. Also, our quantitative results
of RQ; indicate that refactorings have a high chance to occur on classes frequently subject to bug
fixes, which may have affected performance, especially in the case of quick patches. A concrete
example is the PR #1577 of AmazeFileManage [19] Android application. In a linked issue, a user
reports that when she is “copying a large file using SFTP, the process can take more than 1 minute, so
the phone goes in stand by mode.” PR #1577 improves the I/O performance of this feature through
refactoring.

@ This example confirms the importance of specific non-functional attributes (in this case, per-
formance) for different types of software (in this case, a mobile app). Also, once again, it points
to the need for developing refactoring techniques able to consider this heterogeneity of non-
functional requirements rather than mainly focusing on maintainability as done in state-of-the-art
refactoring tools [35, 98]. Indeed, to the best of our knowledge, only a few authors have developed
refactoring techniques having the improvement of performance as the main objective [30, 49, 106];
however, these approaches either target very specific performance issues [49, 106] or are designed
to work on models rather than on source code [30].

4 THREATS TO VALIDITY

Construct validity. A source of inaccuracy is represented by the automated refactoring detection.
However, RMiner has been reported to exhibit a very high precision (98%) and recall (87%) [99].
This threat is mitigated at least in RQ,, where refactorings have been manually reviewed. To iden-
tify bug fixes, we used an approach matching regular expressions onto commit messages [52], as
also done in previous work [87]. To limit threats due to this heuristic [29], two authors indepen-
dently analyzed, for each project we considered, a random sample of commits classified as a bug fix
to mark true and false positives. After discussing disagreements, only 8% of the analyzed commits
resulted to be false positive bug fixes (mostly related to CheckStyle fixes).

In RQ;, we only analyzed the correlation between the presence of any refactoring with various
metrics. While it may be interesting correlating specific types of refactorings with metrics, our
qualitative analysis showed that refactoring goals are often achieved through a combination of
refactorings. To build the explanatory model of RQ;, we have selected a broad set of metrics cap-
turing different aspects of software product and process. It is important to note that the aim was
to correlate such metrics with the presence of at least one refactoring action of any kind. Building
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models for specific refactoring types is out of scope of this article and could, possibly, require to
identify further specific indicators.

InRQ, we identified refactoring-related PRs as those having (i) one of their commits containing a
refactoring identified by RMiner and (ii) a refactoring-related keyword in their title. Such selection
criteria can result in false negatives (i.e., missing some refactoring-related PRs) and, in turn, this
may have resulted in missing categories in our taxonomy. Indeed, it is possible that our taxonomy
is only representative of the motivations behind PRs that can be captured through the adopted
selection criteria.

As context for our study we targeted non-personal/toy projects having a substantial change
history to study and being active. For this reason, we defined a number of selection criteria (i.e.,
at least 5 contributors, 1 fork, 500 commits, 100 PRs, and one recent commit) that, however, may
fail in capturing the type of systems we were interested in.

Internal validity. In the quantitative analysis (RQ;), although we tried to capture factors from
different dimensions (i.e., different kinds product and process metrics), there could be many other
factors that could have influenced the need for refactoring. We mitigated this threat through (i) the
use of a mixed-model considering project as random effect and (ii) the qualitative analysis of RQ,.
It is important to note that the aim of RQ; is to mainly identify correlations between metrics and
refactoring activities, and not about claiming any causation. Only the qualitative analysis of RQ,,
taking into account developers’ discussion, can highlight the rationale for refactoring actions.

Conclusion validity. In RQ; we performed a careful preprocessing of data and variable selec-
tion to avoid multi-collinearity, and normalized metrics to allow properly interpreting the ORs.

External validity. Our analysis is limited to a sample of 150 Java open source projects hosted on
GitHub, and the qualitative analysis to 551 PRs. We do not claim the generalizability of our findings
to other programming languages or to industrial systems. For this reason, a further investigation
on a more diverse set of projects, developed with different programming languages and belonging
to both open and closed-source is highly desirable. Also, it is worth mentioning that in our manual
analysis we only considered PRs for which RMiner identified at least one refactoring operation.
This means that we did not consider PRs that, for example, targeted a complete remodularization
of the system that involved refactoring operations not captured by RMiner.

5 RELATED WORK

Different studies have empirically analyzed refactoring operations from different perspectives,
including how developers perform refactoring [80]; the relationship between refactoring and other
software-related activities (e.g., merge conflicts [72]); the impact of refactoring operations on the
likelihood of introducing bugs [34]; the impact of refactoring on specific quality indicators (e.g.,
quality metrics) [26, 44, 95, 96], or on developers’ productivity [78]. While these studies mine and
analyze refactoring for different purposes, they address different research questions as compared
to the ones subject of our work. For this reason, we focus the discussion on studies analyzing why
developers perform refactoring.

Wang et al. [105] interviewed 10 developers from four software companies to reveal the major
factors motivating refactoring operations. Results highlight external motivators e.g., Recognitions
from Others, and intrinsic motivators, i.e., when refactoring is initiated without any obvious ex-
ternal reward (e.g., Self Esteem) behind refactorings.

Kim et al. [60] present a field study surveying and interviewing 328 Microsoft engineers to
investigate when and how engineers refactor code. They identify the low readability of source
code as the most important symptom that pushes developers to perform refactoring (mentioned
by 21% of developers). Our quantitative analysis confirms the central role of low code readability
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in triggering refactoring. Other frequently mentioned symptoms were code duplication (11%), and
fostering code reuse (10%).

Silva et al. [91] observe that the previously discussed works [60, 105] report findings from sur-
veys asking developers about their general refactoring habits, without focusing on real refactor-
ings they performed. Thus, they use RMiner [99] to monitor refactorings performed in open source
repositories and contacted the developers authoring the refactorings asking to motivate the per-
formed changes. Then, they grouped the responses and defined a catalog of 44 motivations for
12 refactoring operations. For example, they find that three main motivations exist for Rename
Package refactoring: Improve the package name, enforce naming consistency, and move package
to appropriate container [91].

While we share with previous work [60, 91, 105] the goal of identifying factors motivating de-
velopers to perform refactoring operations, we adopt a different and complementary experimental
design. First, we quantitatively investigate process- and product-related factors that may correlate
with refactoring actions (e.g., does low code quality as assessed by quality metrics trigger refac-
toring operations?). Second, we qualitatively analyze refactorings performed by developers in the
context of 551 merged PRs, to complement and validate the refactoring motivators already identi-
fied in the literature [60, 91, 105]. Note that, as for the work by Silva et al. [91] and differently from
the ones by Wang et al. [105] and Kim et al. [60], we look at motivations related to specific refactor-
ing operations (i.e., those performed in the analyzed PRs). Differently from Silva et al. [91], we do
not rely on answers collected through a survey, but we inspected the code changes performed in
the commits related to the PRs, and read the reviewing process carried out before merging the PR
and the related discussion. As previously discussed, we validated and complemented the taxonomy
of motivations they defined.

Peruma et al. [85] also look at the motivations pushing developers to refactor their code, but they
focused only on rename refactoring operations, finding that, in most cases, renaming is applied to
narrow the identifier meaning. Our qualitative study confirmed this finding.

Bavota et al. [39] study the relationship among metrics, code smells, and refactoring. Their
findings indicate that there is no clear causation between code having a smell or exhibiting elevated
complexity metric values and subsequent refactoring of this code. Our study, performed at the
commit level, confirms their results but also points out that readability metrics and process-related
factors play a significant role.

Finally, very related work in this line of research is the one by Vassallo et al. [104], in which
the authors mine 200 systems to quantitatively investigate factors correlating with refactoring.
They consider, in isolation, factors related to when, why, and by whom refactoring is performed.
They found that (i) refactorings are mostly performed after one year from the project startup
and rarely close to a new release, (ii) most of refactorings are performed while enhancing existing
features, and (iii) developers that refactor code are often the owners of the impacted files. Our work,
besides quantitatively investigating a more comprehensive set of process- and product-related
factors (considered altogether in a mixed model), also complements this analysis with a qualitative
investigation on the motivations behind refactorings.

6 CONCLUSION

In this article, we quantitatively and qualitatively analyzed the reasons behind refactoring oper-
ations performed by developers. Our quantitative analysis highlighted that (i) code readability is
the product-related factor mostly correlated with refactoring operations and (ii) process-related
factors such as source code change- and fault-proneness and, especially, the experience of de-
velopers changing a code component, play a significant role in triggering refactoring operations.
Our qualitative analysis resulted in an extensive taxonomy of 67 motivations behind refactorings,

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 4, Article 29. Pub. date: September 2020.



Why Developers Refactor Source Code: A Mining-based Study 29:25

relating to quantitative results where possible. We have made the study material and data available
in our replication package [27].
The implications of our study trigger several directions for future work.

Identifying “when” to trigger refactoring recommendations. Our quantitative study (RQ;) shed
some light on the product and process-related factors that contribute to trigger refactoring op-
erations. Such an empirical evidence represents the basis for future approaches able to predict
“when,” during a project’s evolution to trigger refactoring recommendations. Indeed, such an as-
pect is currently ignored in the refactoring recommenders literature, with researchers focusing
their attention on the core problem of generating meaningful recommendations. However, recom-
mending refactorings in a “context” in which developers do not feel in need to refactoring their
code is unlikely to provide benefits. An interesting research direction in this field is to build on top
of our RQ;’s findings to devise models able to predict when refactoring recommendations would
be welcome by software developers.

On the relevance of “semantic metrics” for code smell detectors. As shown in our RQy, the product
metrics exhibiting the stronger relationship with refactoring operations are those exploiting tex-
tual information extracted from the code, usually referred to as semantic metrics. This was the case
for the readability and for the Conceptual Cohesion of Classes (C3) metrics. This result somehow
supports the previous findings reported in the literature indicating a stronger alignment between
the developers’ perception of code quality and semantic metrics as compared to structural ones
[37]. These findings suggest the adoption of these metrics in code smell detectors that, at the end,
are used to identify refactoring opportunities.

On learning refactoring operations. While discussing the results of our qualitative study (RQ.), a
bold message repeatedly emerged from the analyzed cases: the motivations behind a refactoring
are variegated and heterogeneous and, probably, cannot be captured by any combination of met-
rics. This implies that refactoring recommenders using product- and/or process-metrics as fitness
functions to recommend refactorings will always miss many refactoring opportunities. Indeed,
these techniques mostly target complex code components for refactoring (e.g., God Classes in the
case of extract class refactoring), ignoring all the other scenarios we documented (e.g., applying
extract class to remove a code clone). One possibility worth exploiting in the future is the applica-
tion of deep learning techniques to refactoring recommenders. Indeed, recent work already shown
the possibility to learn from code changes [102]. However, no previous work has attempted to de-
sign refactoring recommenders learning from developers’ activities what a meaningful refactoring
is in a given context.

Automatic support for relevant refactorings is missing. In RQ, we found many cases of manually
performed refactoring operations that could benefit from the development of techniques to au-
tomate such code transformations. This includes the identification and automatic refactoring of
redundant code and misuse of checked/unchecked exceptions in Java as well as the lack of support
for preemptive refactoring (i.e., refactoring operations aimed at accommodating future changes).
We see these areas as possible directions for future work in software refactoring.

Lack of production-ready tools. Some of the cases discussed in RQ; highlighted that, while the
research community has developed many good approaches for supporting specific refactorings,
these approaches find little application in practice. One clear example of this are the rename refac-
toring operations suggested by reviewers to expand abbreviations used in the identifiers of the
code contributed in PRs. These recommendations could be easily generated at commit time by one
of the many approaches proposed in the literature for the automatic expansion of abbreviations
(see e.g., Reference [66]). However, the lack of production-ready tools could be the reason for the
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lack of adoption of such techniques. This is an opportunity not only for researchers, but also for
developers interested in building tools useful for the partial automation of code review activities.

On the need for pursuing “tradeoffs” when refactoring. Finally, our RQ, also highlighted the need
for refactoring techniques able to consider the many contrasting objectives that a code trans-
formation brings with it. Indeed, while most of the refactoring recommenders strive to maximize
maintainability, our findings show that maintainability is only one of the many aspects considered
by developers while refactoring, accompanied by performance, testability, etc. Future approaches
to support refactoring should consider the pros and cons of the recommended solutions from dif-
ferent perspectives, suggesting operations that are sensible to different quality criteria.

Based on the above findings, our future research agenda will focus on the two points described
above: (i) predicting when to recommend refactorings and (ii) developing refactoring tools sensible
to different non-functional requirements.
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