
A Dynamic Approach to Defuse Logic Bombs in
Android Applications

Fausto Fasano1,2[0000−0003−3736−6383], Michele Guerra1,2,3[0000−0001−5507−9084],
Roberto Milanese1, and Rocco Oliveto1,3[0000−0002−7995−8582]

1 University of Molise, Department of Bioscience and Territory, Pesche (IS), Italy
{fausto.fasano, michele.guerra, roberto.milanese,

rocco.oliveto}@unimol.it
2 MOSAIC Research Center, DiBT, Unimol

3 Stake Lab, DiBT, Unimol

Abstract. Logic bombs are a critical security threat in Android appli-
cations that can be triggered by specific events or conditions, leading to
serious consequences. In this work we focus on a special type of logic
bomb exploiting mobile device resources for sensitive data leakage. Such
malicious behaviour can exploit Android permission model by gaining
access to sensitive related resources in a legitimate context and later
using them in a dangerous one, once the logic bomb is triggered. To
address this scenario, we propose a dynamic approach to avoid privacy
leakage in case the logic bomb is triggered. To this aim, we extended
RPCDroid, a tool that monitors the behavior of an Android application
whenever it accesses specific device resources. In particular, to defuse the
logic bomb we force an explicit prompt to authorize dangerous requests,
leveraging the execution context to prevent accesses unbeknownst to the
user, still minimizing the effort required. We assessed the effectiveness
of our proposal using TriggerZoo, a publicly available dataset containing
apps with injected logic bombs. Our results show that a context aware
enabled permission model can effectively prevent uncontrolled access to
privacy related data in case a logic bomb is triggered.

Keywords: Security and Privacy · Context Aware Permission Model ·
Dynamic Analysis · Android Permission Model

1 Introduction

Android is the most popular mobile operating system4, with over 2.5 billion
active users worldwide. Given its pervasive use in a wide range of user devices,
whether handheld, at home, or in the office, Android’s security and privacy
have become paramount concerns. With this growing popularity, the security
of Android applications has become a significant concern, as new threats are
discovered regularly, even in the official Google Play app store[15]. One of the
most significant threats to the security of Android applications is logic bombs.

4 https://www.idc.com/promo/smartphone-market-share



2 F. Fasano et al.

A logic bomb is a type of malicious code that is triggered by specific events or
conditions. When activated, a logic bomb can execute various harmful actions,
such as stealing sensitive data or crashing the system.

Thousands of apps are regularly flagged by antimalware engines. Actually,
the AndroZoo [2] repository has collected over 22 millions of malicious app ver-
sions, among which over 19 millions were available on Google Play Store. There-
fore, addressing the spread of malware in app markets is a prime concern for
researchers and practitioners.

Unfortunately, automatically detecting logic bomb is still an open issue, due
to several pitfalls, such as the high rate of false positives since benign and ma-
licious apps can use the same code for benign and/or malicious behavior, thus
requiring an analyst to verify the behavior [26]. To address this issue, there is a
need for a more context-aware approach to permission control in Android appli-
cations. Context awareness refers to an application’s ability to adapt its behavior
based on the current use context.

In recent years, there has been growing interest in using dynamic analysis
techniques for detecting logic bombs in Android applications. This is mainly
due to the fact that static analysis can be deceived by different obfuscation
schemes [14]. Dynamic analysis refers to the analysis of an application’s be-
havior during runtime. Dynamic analysis techniques have been used in various
security contexts, including detecting malware and identifying vulnerabilities in
web applications [3][29][32].

However, approaches resilient to various bomb analysis techniques including
fuzzing, symbolic execution, multi-path exploration, and program slicing have
been proposed [36].

In this work, we adopt a complementary approach in which, admitting the
possibility that an app contains a logic bomb, we monitor the resources accessed
by the app and regulate their access based on the usage context. Thereby, we are
not affected by the false positive problem. It is worth noting that our approach
does not aim to provide a solution to the problem of logic bombs, but we address
a scenario in which an untrusted app as well as a malware that deceived a
bomb analysis tool is executed. In particular, we do not aim at identifying the
presence of the logic bomb, but we aim at preventing it from causing access to
protected resources unbeknownst to the user. With the term protected resources
we refer to all those features of the device that are associated with potentially
sensitive data leakage and which Android therefore protects by requiring access
to such a dangerous permission. In case the app has not been granted such
permission, it cannot access the resource. Examples of protected resources are:
camera, microphone, contacts, SMS, location, and many more.

Although Android has improved the permission management system over
the years, it still suffers from some limitations that allow a logic bomb to access,
under certain conditions, these resources without the user’s awareness. One of
the mechanisms that can be easily implemented by a malicious app to bypass
Android’s protection is to hide the malicious behavior within apps which, due
to the functionality they offer, legitimately have access to one or more of these



A Dynamic Approach to Defuse Logic Bombs in Android Applications 3

protected resources. Once access permission is obtained, the app triggers the
logic bomb without the operating system deeming it necessary to request for
further confirmation.

Clearly, logic bombs are designed to trigger this behavior only if the user
has previously permanently granted access to the resource they want to exploit,
so as not to betray their presence by trying to access unauthorized resources.
Android allows the user to specify whether access to a resource should be limited
to a single execution or whether it is persistent. However, it is very likely that
if the legit functionality is frequent – sooner or later – the user will decide to
grant the permission permanently. In such a circumstance the logic bomb would
be triggered.

To mitigate this problem we propose an extension of the Android permissions
model in which the authorization to access a protected resource is associated to
the execution context. By execution context we mean a combination of the func-
tionality the app is involved in and the user interface element the user interacted
with. There are several ways to identify the execution context. For instance, it
is possible to analyze the calling context, i.e., the list of active functions cur-
rently on the call stack [30], use the calling context encoding [31], the execution
index [33], as well as techniques to recording and reporting dynamic calling con-
texts [4]. By adopting the calling context as a new dimension of the permission
model, the user will be able to continue using the functionality s/he has already
granted permissions to without the burden of repeatedly allowing access to the
same resource, but at the same time any access to the same protected resource
occurring in contexts different from already authorized ones will require an ex-
plicit authorization. As a result, the logic bomb will not trigger if the context
has not been previously analyzed. On the other hand, if the logic bomb was
designed to trigger independently of the context, e.g., because it is unaware of
the modified permission model, access to protected resources would have to be
explicitly granted by the user. This behavior would be an alarm bell for the user,
who could identify it as malicious, thus defusing or mitigating the bomb effect.

In this paper, to identify the calling contexts and instrument the context-
based permission model, we extend RPCDroid [12], a tool for monitoring the
resources accessed by Android applications. RPCDroid is designed to monitor
any access to protected resources at runtime by tracking the invocation of sen-
sitive APIs and system services and logging useful information to determine the
context a protected resource is used in. Note that these are only a subset of the
possible execution context, namely those involving protected resources usage. A
logic bomb not using such type of resources could be triggered without being
intercepted. As said before, in this study we simply aim at avoiding such kind of
malicious behaviour. Clearly, the approach could be extended to include more
sophisticated context identification approaches and different type of resources
currently not protected by dangerous permissions.

We use RPCDroid both to enforce the permission model with context-aware
access control policies and to better understand logic bomb common behaviours
to further improve the tool ability to detect anomalies in the accesses to protected



resources. By analyzing the logs generated by RPCDroid, we can indeed identify
the exact conditions under which a logic bomb is triggered, providing a better
understanding of its behavior and how it is activated.

To assessed the effectiveness of our proposal to identify when a logic bomb
is triggered and control the access to a protected resources, we used Trigger-
Zoo [27], a publicly available dataset containing apps with injected logic bombs.
We manually executed a subset of the apps and, using the indications provided
in the dataset, we managed to invoke the app features that contain the triggers
for the logic bombs. The achieved results confirm that using a context-aware
permission model leveraging dynamic analysis techniques, we can prevent sensi-
tive data from being leaked without the knowledge of the user even in case of a
logic bomb.

The rest of the paper is organized as follows. Section 2 describes the context
aware permission model implemented with RPCDroid. In Section 3 we provide
a preliminary evaluation of the effectiveness of our proposal using TriggerZoo.
Section 4 discussed related works, while Section 5 concludes the paper and gives
indications for future work.

2 Context Aware Permission Model with RPCDroid

In this paper, we aim to develop a comprehensive approach to assess the effec-
tiveness of adopting the usage context to discriminate between different types of
access to the same sensitive resource in Android applications. Our primary goal
is to enhance user security and privacy by modifying the permission model to be
context aware, prompting users to make a choice whenever permissions are used
in a new context. This approach is based on the premise that the logic bomb
triggering event is closely related to the misuse of permissions. Our system relies
on user interaction to detect and mitigate such threats.

Our approach offers several advantages over existing approaches. It allows
us to identify context-specific behavior, reducing the risk of false positives and
enabling us to focus our efforts on the most critical contexts. Furthermore, in
addition to identifying the specific context in which a logic bomb is triggered,
we propose an approach to defuse it. Specifically, our approach focuses on the
use of permissions, which Android uses to grant applications access to sensitive
resources such as the camera, microphone, and contacts. Our approach requires
explicit user consent before an application can use a protected resource in a
specific context, thereby reducing the risk of malicious applications misusing
permissions to trigger logic bombs. To implement our approach, we improve
the existing Android permission model, which requires developers to declare the
permissions that their applications require and prompt the user for consent be-
fore using them. We extend this model by incorporating context awareness and
fine-grained permission control, which allow us to limit the use of permissions to
specific contexts and provide users with finer-grained control over the permis-
sions granted to applications. Our approach is based on the premise that a logic



A Dynamic Approach to Defuse Logic Bombs in Android Applications 5

bomb is triggered by a specific sequence of events, which can be identified by
analyzing the runtime behavior of an application.

2.1 RPCDroid

We used and improved upon an existing dynamic analysis tool called RPCDroid
to monitor the execution of mobile applications that access specific device re-
sources requiring dangerous permissions. Our enhancements focus on creating a
finer-grained approach that allows for a better understanding of the logic bomb
triggering process and helps prevent malicious behavior activation in Android
applications. Indeed, RPCDroid was designed to perform a dynamic analysis of
the use of dangerous permissions in Android. The output of the tool consists of

– One or more JSON files containing a log of all events handled (such as an
Activity change or interaction with a UI component)

– One or more JSON files files containing the permissions used
– Additional material useful for the analysis of the identified contexts, such as

Screenshots and screen recording for each event or permission request

RPCDroid Analyzer is installed as an EXposed module on the Android device
or emulator and collects information to identify resource usage contexts. Upon
starting the monitored application, RPCDroid Analyzer tracks any access to
resources that require dangerous permissions at the system level (e.g., camera,
microphone, storage, or location) through a dynamic injection mechanism based
on hooking and callback techniques. These include all the actions performed by
the user at the interface level and any system call to the Android access control
and validation mechanism. More details on the tool are available in [12].

2.2 Enabling Permission Control in RPCDroid

RPCDroid has been modified to save each context in which the request for a
protected resource has previously been analysed. To prevent some logic bombs
from not triggering due to the denial of the corresponding permissions, we de-
cided to automatically grant the permissions declared by the app within the
Manifest file, in order to put tool in the worst possible scenario. In fact, one of
the most common behaviors for logic bombs is to not trigger if they don’t have
the opportunity to execute the malicious payload. By granting these permissions
outside of the trigger code, we simulated a situation where the logic bomb is free
to trigger at any time. Moreover, we improved the existing Android permission
model, which requires developers to declare the permissions that their applica-
tions require and prompt the user for consent before using them. We extended
this model by using context information provided by RPCDroid, allowing the
user to grant or deny a previously evaluated permission request anytime the
execution context is different (see Figure 1) providing users with finer-grained
control over the permissions granted to applications.

Currently, the system identifies a context based on user actions on the UI
(such as touching a button or changing activities) and permissions requested at



6 F. Fasano et al.

Fig. 1: Example of added prompt

runtime. It is worth noting that the approach can be enhanced to include more
restrictive or exhaustive execution context identification approaches. The pro-

Fig. 2: The approach dynamically identifies individual permission usage contexts,
showing the user the decision prompt.

posed approach is depicted in Figure (Figure 2). RPCDroid uses the EXposed
framework to dynamically inject the services we developed. These services per-
form method hooking concerning the invocation of dangerous permissions and
use callbacks to inject code that dynamically displays the permission manage-
ment prompt.

Finally, we monitor the app’s behavior in the application process by inter-
cepting the calls to dangerous permissions associated to protected resources. We
use this information to contextualize the permission requests and display the



appropriate prompt to the user. In this way, we can provide a more fine-grained
permission usage system that stops the execution of applications until the user
chooses whether allowing the access or not.

3 Evaluation

To evaluate the effectiveness of our context aware permission model in preventing
a logic bomb to actually access sensitive data without the knowledge of the user,
we executed the improved RPCDroid tool on a dataset of Android apps called
TriggerZoo [27], provided by Androzoo [2]. This dataset contains 406 apps with
injected logic bombs and includes descriptions of the logic bomb activation
(e.g., the activity in which it is activated, permissions used, and return values).
We executed our tool on an Android 11 (API 30) emulator with RPCDroid
active. We randomly selected a subset including 70 apps, executed them using
our modified version of the RPCDroid monitoring tool, and conducted an in-
depth analysis of their behavior to understand the logic bomb triggering process
and its relationship with permission misuse.

In Table 1 we report the results of our study. In particular, 45 of the selected
apps could not be executed due to various reasons, while for 25 of them we were
able to reproduce all the steps needed to test the trigger condition.

Category Number of Apps

Total apps analyzed 70

Non-executable apps 45
Dataset related issues 36

Incorrect permission declaration 10
Incompatible with Android version 6
Other errors 20

RPCDroid related issues 9

Executable apps 25
RPCDroid mitigation successful 16
Trigger condition not met 4
App closed by logic bomb 3
RPCDroid mitigation failed 2

Table 1: Summary of the analysis results for the 70 apps

Amongst the reasons that prevented the app from being executed without
crashing we mention issues in the repackaged application, incorrect permission
declarations within the Manifest, and incompatibility with the emulator’s An-
droid versions (i.e., Android 11). Specifically, 36 apps were not executable due
to dataset related issues such as corrupted APKs. We verified this issue by



8 F. Fasano et al.

attempting to execute the apps on different emulators with various Android ver-
sions. We ruled out the possibility that our tool was the cause of the application
crash, executing them on different emulators where the tool was not installed
and experiencing the same issues. Among these 36 apps, 10 had errors related
to the incorrect injection of permission declaration within the Manifest by Trig-
gerZoo. For example, in the XML reported in Listing 1.1 instead of declaring
the permission as android.permission.ACCESS FINE LOCATION it has been de-
clared as Manifest.permission.ACCESS FINE LOCATION. In our emulator, this
caused the app crashing as soon as the permission was requested, as Android
did not recognize it.

Listing 1.1: Example of incorrect permission declaration in the manifest

<manifest

xmlns:android="http:// schemas.android.com/apk/res/android"

package="com.prueba.joel.sort">

<uses -permission

android:name="Manifest.permission.

ACCESS_FINE_LOCATION"/>

<uses -permission

android:name="Manifest.permission.

ACCESS_COARSE_LOCATION"/>

<uses -permission

android:name="android.permission.INTERNET"/>

</manifest >

Furthermore, 6 of the 36 apps were incompatible with the Android version
used in our analysis due to the outdated target SDK used to build them. The
remaining 20 apps had issues with method calls and native code or were improp-
erly recompiled, causing them to crash upon startup. The TriggerZoo authors
acknowledged that such issues might be possible. Finally, 9 of the apps failed to
execute when RPCDroid was active. These were hybrid apps that, for some rea-
son, attempted to use permissions not declared in the Manifest. Since RPCDroid
sets all manifest permissions to ”Granted” during the analysis, using undeclared
permission caused our tool to throw an exception and terminate the app exe-
cution. It is important to note that such undeclared permissions are no more
allowed in recent versions of Android, so this issue would not exist in a real
setting.

Considering the 25 apps that correclty executed on the emulator, wemanually
executed them while our enhanced RPCDroid tool monitored the running session.
In 16 of them, the tool displayed a prompt asking us to allow or deny using
a sensitive resource precisely when the trigger event that would activate the
logic bomb occurred. As a result, the app execution was paused until we decided
on permission use in that specific context. It is worth noting that the context in
which the tool requested resource usage was off-topic compared to the requested
resource. This is consistent with what we expected from malicious behavior.
For example, a request happened in a context where the app displayed a list of
images to set as the device’s wallpaper. When we pressed the button to set the



A Dynamic Approach to Defuse Logic Bombs in Android Applications 9

wallpaper, the app requested permission to send/read SMS. In this situation, we
naturally denied the usage, preventing the trigger event activation. To further
evaluate whether that was indeed a trigger event, we retraced our steps through
the same context while confirming the permission use this time. Through the
log analysis, we were able to identify that the event was, in fact, the trigger
for a logic bomb. It is important to emphasize that such behavior occurred
consistently across all the analyzed apps.

In addition to the 16 apps mentioned earlier, we analyzed four other appli-
cations in which the trigger condition for the logic bomb could not be activated
due to the design of the apps. Specifically, one of these apps required authenti-
cation through a login form whose information was not provided in the dataset
description. Two apps were designed to activate the logic bomb only if the de-
vice met certain requirements, such as specific IMEI or model information which,
unfortunately, are limited on the emulator. Lastly, one of the apps is meant to
activate the logic bomb at a specific time of a particular day. By analyzing the
behavior of these apps as described by the authors of Triggerzoo, we are confi-
dent that, had we met the trigger condition, our RPCDroid enforcement would
have correctly presented the user with a prompt to block or allow the use of the
protected resources requested by the logic bomb.

For three applications, once the trigger condition for the logic bomb was
satisfied, the malicious behavior of the bomb involved closing the application,
but our tool did not display any prompt. Although in these cases the code
behind the trigger was actually executed without the user being able to prevent
it, it should be noted that our approach is specifically designed to control access
to protected device resources, so we expected that this behavior would not have
been intercepted by the tool as it is not associated with a permission in Android.
Similarly, for two applications the tool was unable to mitigate the behavior of
the logic bomb since the malicious behavior did not involve using dangerous
permissions.

It is worth noting that when running the apps manually, requests for permis-
sions were almost exclusively made during the activation of a logic bomb. This
is probably also due to the limited complexity of the apps in the dataset which
do not include many features. However, the mechanism for detecting the execu-
tion context and monitoring only dangerous permissions has proven effective in
limiting repeated requests to the end user. Moreover, from the analysis of the
RPCDroid logs it is also possible to extract common patterns in the use of per-
missions by applications containing logic bombs. This could further improve the
tool’s ability to intercept the most dangerous requests in a more precise manner,
potentially providing suggestions to direct the user in the decision to grant or
deny a permission request.

To conclude, in our analysis of 25 apps, the proposed RPCDroid enhance-
ment was effective in 16 apps, where the prompt was shown to users, allowing
them to deny the access to protected resources requested by the logic bomb.
The trigger condition could not be activated in four apps, so we could not assess
the approach against them. In the rest of the apps the tool could not mitigate



the logic bomb behavior due to the lack of permission usage during the mali-
cious action, but no privacy violations could occurr in similar situations. This
is a remarkable result concerning the overall effectiveness of the context aware
fine grained permission model to defuse logic bombs or mitigate their impact
on user privacy. The system’s ability to associate UI actions and permission re-
quests to specific contexts allowed for a more comprehensive understanding of
the application’s behavior and the potential risks involved.

4 Related Works

Over the past decade, numerous approaches have been proposed to automate
malware detection. These approaches involve exploring static analysis techniques
[9,10,13,19,37], dynamic execution [21], or a combination of both [5,6,34], as well
as machine learning [20,25]. Although effective on benchmarks, these techniques
may fail to detect new attacks that use sophisticated evasion techniques. For
example, attackers may employ code obfuscation [7] to bypass static analysis or
hide malicious code behind triggering conditions during dynamic analysis.

Logic bombs can be used for various malicious activities, such as adware [8],
Trojan [22], ransomware [35], spyware [24], and more [40]. As the trigger and
the malicious code are independent of the core application code, logic bombs can
easily be added to legitimate apps and repackaged for distribution [11,16,17,39].
Therefore, detecting logic bombs is crucial, particularly in mobile devices con-
taining critical personal information. Despite the challenges in detecting logic
bombs, various approaches have been proposed in the literature. For instance,
researchers have explored static-analysis-based heuristic or machine learning ap-
proaches [18] and dynamic-analysis-based approaches [10,21,38] to identify suspi-
cious sensitive triggers. However, detecting logic bombs remains a problem [23],
with both static and dynamic analyses often unable to detect such behaviors [1]
[36].

Static analyses may be limited by many conditional statements in a given app
code, making it challenging to identify suspicious sensitive triggers accurately.
Moreover, high rate of false positives suggest that a manual analysis should
be conducted to prevent a legitimate app from being erroneously considered to
contain a logic bomb [26].

TriggerScope [10] uses symbolic execution to detect logic bombs but is limited
to certain trigger types and may not scale to large datasets. Dark Hazard [18]
leverages a supervised learning approach with engineered features to identify
sensitive triggers but flags up to 20% of apps, making it inefficient for isolat-
ing dangerous triggers. Unlike these approaches, our proposed method focuses
specifically on identifying suspicious unexpected dangerous events and detecting
logic bombs among them using dynamic analysis.

Difuzer [28] proposed an approach that relies on unsupervised learning tech-
niques and specific trigger/behavior features to identify suspicious hidden sen-
sitive operations. In contrast, our approach focuses on dynamic analysis and
context-aware detection to prevent logic bombs triggered in dangerous contexts



A Dynamic Approach to Defuse Logic Bombs in Android Applications 11

from being executed without the user approval, allowing for targeted mitigation
strategies. Additionally, our approach does not block app execution in case of a
false positive but instead informs the user of sensitive resource usage, allowing
for continued app use. In the event of a false positive, our system does not block
the execution of the app or prevent the user from acting. Instead, it informs
the user that a sensitive resource will be used in that context, allowing the user
to make an informed decision about whether to proceed or not. This capability
is an improvement over existing techniques that rely solely on binary classifica-
tion and often generate false positives, leading to unnecessary blocking of app
execution.

5 Conclusion

The growing popularity of Android and the increasing number of threats af-
fecting mobile apps demand innovative approaches to ensure user security and
privacy.

In this work, we addressed logic bombs, a type of malicious code that is
triggered by specific events or conditions. We proposed a dynamic approach to
avoid privacy leakage in case the malicious code is activated. In particular, we
aim at identifying execution contexts related to protected resources and prevent
unauthorized access to privacy related data through logic bombs. Unlike other
related approaches, we do not specifically focus on identifying logic bombs, but
provide a mechanism to mitigate the effects of potential malware by controlling
access to protected resources. This prevent us from suffering from the false pos-
itives issue. Indeed, our approach does not block the execution of the app in the
case of a candidate logic bomb. Instead, we informs users whenever a sensitive
resource is going to be used in a specific context, enabling users to block the
malicious behavior.

We assessed the effectiveness of our proposal with TriggerZoo [27], a publicly
available dataset containing apps with injected logic bombs. The results are
promising since the approach allowed us to prevent the execution of malicious
code behind a logic bomb trigger in all the situations in which the code actually
tried to access a protected resource. We also collected logs generated by our
enhanced version of RPCDroid, a tool that monitors the runtime behavior of
Android applications to identify the exact conditions under which a logic bomb
is triggered and permit a better understanding of its behavior. This gave us
important insights on the behaviour of logical bombs while accessing privacy
related resources that we plan to use to further improve the ability to distinguish
legitimate and malicious behaviors, reducing the effort required to the user for
decisions regarding dangerous permissions.

The tool used to assess the proposed approach simply represents a prototype
implementation. In fact, it requires root access to the mobile device making
it unsuitable for a real context. However, it is desirable that in the future, a
permission management aware of the execution context and the usage pattern
of dangerous permissions will be natively integrated into the operating system.



12 F. Fasano et al.

In this way, the approach could actually contributes to the overall security of
the Android ecosystem and protects user privacy and sensitive data even in case
of security threats like logic bombs, notoriously difficult to detect.

References

1. Agrawal, H., Alberi, J.L., Bahler, L., Micallef, J., Virodov, A., Magenheimer, M.,
Snyder, S., Debroy, V., Wong, E.: Detecting hidden logic bombs in critical infras-
tructure software (2012)

2. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: Collecting millions of
android apps for the research community. In: Proceedings of the 13th International
Conference on Mining Software Repositories. pp. 468–471. MSR ’16, ACM, New
York, NY, USA (2016). https://doi.org/10.1145/2901739.2903508, http://doi.

acm.org/10.1145/2901739.2903508

3. Bellizzi, J., Vella, M.: Wexpose: Towards on-line dynamic analysis of web attack
payloads using just-in-time binary modification. 2015 12th International Joint Con-
ference on e-Business and Telecommunications (ICETE) 04, 5–15 (2015)

4. Bond, M.D., Baker, G.Z., Guyer, S.Z.: Breadcrumbs: efficient context sensitivity for
dynamic bug detection analyses. In: ACM-SIGPLAN Symposium on Programming
Language Design and Implementation (2010)

5. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D.X., Yin, H.: Automat-
ically identifying trigger-based behavior in malware. In: Botnet Detection (2008)

6. Choudhary, M., Kishore, B.: Haamd: Hybrid analysis for android malware detec-
tion. In: 2018 International Conference on Computer Communication and Infor-
matics (ICCCI). pp. 1–4 (2018). https://doi.org/10.1109/ICCCI.2018.8441295

7. Dong, S., Li, M., Diao, W., Liu, X., Liu, J., Li, Z., Xu, F., Chen, K., Wang, X.,
Zhang, K.: Understanding android obfuscation techniques: A large-scale investi-
gation in the wild. In: Beyah, R., Chang, B., Li, Y., Zhu, S. (eds.) Security and
Privacy in Communication Networks. pp. 172–192. Springer International Publish-
ing, Cham (2018)

8. Erturk, E.: A case study in open source software security and privacy: Android
adware. In: World Congress on Internet Security (WorldCIS-2012). pp. 189–191
(2012)

9. Fereidooni, H., Conti, M., Yao, D., Sperduti, A.: Anastasia: Android malware
detection using static analysis of applications. In: 2016 8th IFIP International
Conference on New Technologies, Mobility and Security (NTMS). pp. 1–5 (2016).
https://doi.org/10.1109/NTMS.2016.7792435

10. Fratantonio, Y., Bianchi, A., Robertson, W., Kirda, E., Kruegel, C., Vigna,
G.: Triggerscope: Towards detecting logic bombs in android applications. In:
2016 IEEE Symposium on Security and Privacy (SP). pp. 377–396 (2016).
https://doi.org/10.1109/SP.2016.30

11. Gadyatskaya, O., Lezza, A.L., Zhauniarovich, Y.: Evaluation of resource-
based app repackaging detection in android. pp. 135–151 (11 2016).
https://doi.org/10.1007/978-3-319-47560-89

12. Guerra., M., Milanese., R., Oliveto., R., Fasano., F.: Rpcdroid: Runtime
identification of permission usage contexts in android applications. In: Pro-
ceedings of the 9th International Conference on Information Systems Se-
curity and Privacy - ICISSP,. pp. 714–721. INSTICC, SciTePress (2023).
https://doi.org/10.5220/0011797200003405

https://doi.org/10.1145/2901739.2903508
http://doi.acm.org/10.1145/2901739.2903508
http://doi.acm.org/10.1145/2901739.2903508
https://doi.org/10.1109/ICCCI.2018.8441295
https://doi.org/10.1109/NTMS.2016.7792435
https://doi.org/10.1109/SP.2016.30
https://doi.org/10.1007/978-3-319-47560-8_9
https://doi.org/10.5220/0011797200003405


A Dynamic Approach to Defuse Logic Bombs in Android Applications 13

13. Kang, H., Jang, J.w., Mohaisen, D., Kim, H.K.: Detecting and classifying
android malware using static analysis along with creator information. In-
ternational Journal of Distributed Sensor Networks 2015, 1–9 (06 2015).
https://doi.org/10.1155/2015/479174

14. Khalid, S., Hussain, F.B.: Evaluating dynamic analysis features for an-
droid malware categorization. In: 2022 International Wireless Com-
munications and Mobile Computing (IWCMC). pp. 401–406 (2022).
https://doi.org/10.1109/IWCMC55113.2022.9824225

15. Kotzias, P., Caballero, J., Bilge, L.: How did that get in my phone? unwanted
app distribution on android devices. In: 2021 IEEE Symposium on Security and
Privacy (SP). pp. 53–69 (2021). https://doi.org/10.1109/SP40001.2021.00041

16. Li, L., Bissyande, T.F., Klein, J.: Rebooting research on detecting repackaged an-
droid apps: Literature review and benchmark. IEEE Transactions on Software En-
gineering 47(04), 676–693 (apr 2021). https://doi.org/10.1109/TSE.2019.2901679

17. Li, L., Bissyandé, T.F., Klein, J.: Simidroid: Identifying and explaining similarities
in android apps. In: 2017 IEEE Trustcom/BigDataSE/ICESS. pp. 136–143 (2017).
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.230

18. Pan, X., Wang, X., Duan, Y., Wang, X., Yin, H.: Dark hazard: Learning-based,
large-scale discovery of hidden sensitive operations in android apps (01 2017).
https://doi.org/10.14722/ndss.2017.23265

19. Papp, D., Buttyán, L., Ma, Z.: Towards semi-automated detection of trigger-
based behavior for software security assurance. In: Proceedings of the 12th
International Conference on Availability, Reliability and Security. ARES
’17, Association for Computing Machinery, New York, NY, USA (2017).
https://doi.org/10.1145/3098954.3105821, https://doi.org/10.1145/3098954.

3105821

20. Peiravian, N., Zhu, X.: Machine learning for android malware detection using per-
mission and api calls. In: 2013 IEEE 25th International Conference on Tools with
Artificial Intelligence. pp. 300–305 (2013). https://doi.org/10.1109/ICTAI.2013.53

21. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.:
Rage against the virtual machine: hindering dynamic analysis of android malware.
Proceedings of the 7th European Workshop on System Security, EuroSec 2014 (04
2014). https://doi.org/10.1145/2592791.2592796

22. Pieterse, H., Olivier, M.S.: Android botnets on the rise: Trends and char-
acteristics. In: 2012 Information Security for South Africa. pp. 1–5 (2012).
https://doi.org/10.1109/ISSA.2012.6320432

23. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society 74, 358–366 (1953)

24. Saad, M.H., Serageldin, A., Salama, G.I.: Android spyware disease
and medication. In: 2015 Second International Conference on Infor-
mation Security and Cyber Forensics (InfoSec). pp. 118–125 (2015).
https://doi.org/10.1109/InfoSec.2015.7435516

25. Sahs, J., Khan, L.: A machine learning approach to android malware detection.
In: 2012 European Intelligence and Security Informatics Conference. pp. 141–147
(2012). https://doi.org/10.1109/EISIC.2012.34

26. Samhi, J., Bartel, A.: On the (in)effectiveness of static logic bomb detection for
android apps. IEEE Transactions on Dependable and Secure Computing 19(6),
3822–3836 (2022). https://doi.org/10.1109/TDSC.2021.3108057

27. Samhi, J., Bissyandé, T.F., Klein, J.: Triggerzoo: A dataset of android ap-
plications automatically infected with logic bombs. In: Proceedings of the

https://doi.org/10.1155/2015/479174
https://doi.org/10.1109/IWCMC55113.2022.9824225
https://doi.org/10.1109/SP40001.2021.00041
https://doi.org/10.1109/TSE.2019.2901679
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.230
https://doi.org/10.14722/ndss.2017.23265
https://doi.org/10.1145/3098954.3105821
https://doi.org/10.1145/3098954.3105821
https://doi.org/10.1145/3098954.3105821
https://doi.org/10.1109/ICTAI.2013.53
https://doi.org/10.1145/2592791.2592796
https://doi.org/10.1109/ISSA.2012.6320432
https://doi.org/10.1109/InfoSec.2015.7435516
https://doi.org/10.1109/EISIC.2012.34
https://doi.org/10.1109/TDSC.2021.3108057


14 F. Fasano et al.

19th International Conference on Mining Software Repositories. p. 459–463.
MSR ’22, Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3524842.3528020, https://doi.org/10.1145/3524842.

3528020
28. Samhi, J., Li, L., Bissyand’e, T.F., Klein, J.: Difuzer: Uncovering suspicious hidden

sensitive operations in android apps. 2022 IEEE/ACM 44th International Confer-
ence on Software Engineering (ICSE) pp. 723–735 (2021)

29. Sekar, R.C.: An efficient black-box technique for defeating web application attacks.
In: Network and Distributed System Security Symposium (2009)

30. Sumner, W.N., Zhang, X.: Identifying execution points for dynamic analyses. In:
2013 28th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). pp. 81–91 (2013). https://doi.org/10.1109/ASE.2013.6693069

31. Sumner, W.N., Zheng, Y., Weeratunge, D., Zhang, X.: Precise calling context
encoding. IEEE Transactions on Software Engineering 38(5), 1160–1177 (2012).
https://doi.org/10.1109/TSE.2011.70

32. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Krügel, C., Vigna, G.: Cross site
scripting prevention with dynamic data tainting and static analysis. In: Network
and Distributed System Security Symposium (2007)

33. Xin, B., Sumner, W.N., Zhang, X.: Efficient program execution indexing. In: Pro-
ceedings of the 29th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. p. 238–248. PLDI ’08, Association for Computing Ma-
chinery, New York, NY, USA (2008). https://doi.org/10.1145/1375581.1375611,
https://doi.org/10.1145/1375581.1375611

34. Xu, L., Zhang, D., Jayasena, N., Cavazos, J.: Hadm: Hybrid analysis for detection
of malware. pp. 702–724 (09 2018). https://doi.org/10.1007/978-3-319-56991-851

35. Yang, T., Yang, Y., Qian, K., Lo, D.C.T., Qian, Y., Tao, L.: Automated detection
and analysis for android ransomware. In: 2015 IEEE 17th International Conference
on High Performance Computing and Communications, 2015 IEEE 7th Interna-
tional Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th Inter-
national Conference on Embedded Software and Systems. pp. 1338–1343 (2015).
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.39

36. Zeng, Q., Luo, L., Qian, Z., Du, X., Li, Z., Huang, C.T., Farkas, C.: Resilient
user-side android application repackaging and tampering detection using crypto-
graphically obfuscated logic bombs. IEEE Transactions on Dependable and Secure
Computing 18(6), 2582–2600 (2021). https://doi.org/10.1109/TDSC.2019.2957787

37. Zhao, Q., Zuo, C., Dolan-Gavitt, B., Pellegrino, G., Lin, Z.: Automatic
uncovering of hidden behaviors from input validation in mobile apps. In:
2020 IEEE Symposium on Security and Privacy (SP). pp. 1106–1120 (2020).
https://doi.org/10.1109/SP40000.2020.00072

38. Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., Zou, W.: Smartdroid:
An automatic system for revealing ui-based trigger conditions in android applica-
tions. In: Proceedings of the Second ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices. p. 93–104. SPSM ’12, Association for Computing
Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2381934.2381950,
https://doi.org/10.1145/2381934.2381950

39. Zhou, W., Zhang, X., Jiang, X.: Appink: Watermarking android apps for
repackaging deterrence. In: Proceedings of the 8th ACM SIGSAC Sym-
posium on Information, Computer and Communications Security. p. 1–12.
ASIA CCS ’13, Association for Computing Machinery, New York, NY,
USA (2013). https://doi.org/10.1145/2484313.2484315, https://doi.org/10.

1145/2484313.2484315

https://doi.org/10.1145/3524842.3528020
https://doi.org/10.1145/3524842.3528020
https://doi.org/10.1145/3524842.3528020
https://doi.org/10.1109/ASE.2013.6693069
https://doi.org/10.1109/TSE.2011.70
https://doi.org/10.1145/1375581.1375611
https://doi.org/10.1145/1375581.1375611
https://doi.org/10.1007/978-3-319-56991-8_51
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.39
https://doi.org/10.1109/TDSC.2019.2957787
https://doi.org/10.1109/SP40000.2020.00072
https://doi.org/10.1145/2381934.2381950
https://doi.org/10.1145/2381934.2381950
https://doi.org/10.1145/2484313.2484315
https://doi.org/10.1145/2484313.2484315
https://doi.org/10.1145/2484313.2484315


A Dynamic Approach to Defuse Logic Bombs in Android Applications 15

40. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolu-
tion. In: 2012 IEEE Symposium on Security and Privacy. pp. 95–109 (2012).
https://doi.org/10.1109/SP.2012.16

https://doi.org/10.1109/SP.2012.16

	A Dynamic Approach to Defuse Logic Bombs in Android Applications

