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Abstract Android fragmentation is a well-known issue referring to the adop-
tion of different versions in the multitude of devices supporting such an operat-
ing system. Each Android version features a set of APIs provided to developers.
These APIs are subject to changes and may cause compatibility issues. To sup-
port app developers, approaches have been proposed to automatically identify
API compatibility issues. CiD, the state-of-the-art approach, is a data-driven
solution learning how to detect those issues by analyzing the change history
of Android APIs (“API side” learning). In this paper (extension of our MSR
2019 paper), we present an alternative data-driven approach, named ACRyL.
ACRyL learns from changes implemented in apps in response to API changes
(“client side” learning). When comparing these two solutions on 668 apps,
for a total of 11,863 snapshots, we found that there is no clear winner, since
the two techniques are highly complementary, and none of them provides a
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comprehensive support in detecting API compatibility issues: ACRyL achieves
a precision of 7.0% (28.0%, when considering only the severe warnings), while
CiD achieves a precision of 18.4%.

This calls for more research in this field, and led us to run a second empirical
study in which we manually analyze 500 pull-requests likely related to the
fixing of compatibility issues, documenting the root cause behind the fixed
issue. The most common causes are related to changes in the Android APIs
(∼ 87%), while about 13% of the issues are related to external causes, such as
build and distribution, dependencies, and the app itself. The provided empirical
knowledge can inform the building of better tools for the detection of API
compatibility issues.

Keywords Android, API Compatibility Issues, Empirical Study, Taxonomy

1 Introduction

The fragmentation of the Android ecosystem is well documented in the literature
(Choudhary et al., 2015; Han et al., 2012; Joorabchi et al., 2013; Linares-Vásquez
et al., 2017; Wei et al., 2016; Zhou et al., 2014). The high number of hardware
devices supporting Android, the fast evolution of the Android APIs/OS, and
the existence of customized versions of the APIs/OS deployed by Original
Equipment Manufacturers (OEMs) on their devices, leads to a vast number of
possible running environments for an app (Han et al., 2012; Mutchler et al.,
2016; Zhou et al., 2014). Changes in the Android APIs are the rule rather
than the exception (Bavota et al., 2015; Linares-Vásquez et al., 2013, 2014;
McDonnell et al., 2013), pressuring developers to quickly react to newly released
APIs to avoid issues related to API compatibility issues.

To illustrate a concrete example of API compatibility issue, let us introduce
the GitHub issue 5059 of the libgdx framework1 (fixed in commit 88e0b2e).
The issue states that some sounds are not played anymore, because of changes
to the Android API. Therefore, conditional statements should be added to
let the app know the Android version executed by the device, to adapt its
behavior. This type of compatibility issues is common and inspired approaches
to automatically detect such issues (Li et al., 2018a; Luo et al., 2018; Wei et al.,
2016; Wu et al., 2017).

Approaches that detect API compatibility issues by relying on detection
rules are either hand-crafted or automatically mined from the API documen-
tation. This latter is the solution adopted by CiD (Li et al., 2018a), the
state-of-the-art tool using a data-driven solution able to learn how to detect
API compatibility issues by analyzing the changes in the history of Android
APIs (“API side” learning). We define an approach data-driven if it is able to
automatically infer rules from existing data (i.e., not hand-crafted by human
experts). While CiD is able to detect these issues, it lacks patch suggestion.

1https://github.com/libgdx/libgdx/issues/5059
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We propose a data-driven solution, ACRyL, which adopts a different
approach: it learns from changes implemented in other apps in response to API
breaking changes (“client side” learning). This allows ACRyL to (i) recommend
how to fix the detected issue, and (ii) identify suboptimal API usages in
addition to API compatibility issues. With “suboptimal API usages” we refer
to cases in which an app is using an API available in all the versions supported
by the app (thus not being a compatibility issue) but that, starting from a
specific version, can be replaced by a newly introduced API better suited for
the implemented feature.

We run an empirical study involving 11,863 snapshots of open source
Android apps to compare the two data-driven solutions, and we found that
none of them is superior to the other. Indeed, we found CiD and ACRyL
to be highly complementary, i.e., they identify an almost disjointed set of
compatibility issues. Both techniques have substantial limitations, indicating
the need for more research in this field aimed at fostering the development of
better tools for API compatibility detection.

As a consequence of our findings, we run a qualitative study investigating
the root causes behind the API compatibility issues fixed by developers. This
study has the goal of providing empirical evidence useful for the research com-
munity to identify limitations of existing detection tools and, as a consequence,
develop better solutions. The study has been run by manually analyzing 500
pull requests automatically selected as likely related to the fixing of API com-
patibility issues in Android apps. As output of this study, we present a detailed
taxonomy of root causes behind compatibility issues (Figure 8), discussing
interesting examples, the solution adopted by developers for their fixing, and
directions/challenges for future research work in the area. Besides, we estimate
the recall of the tools for each main category of the taxonomy to identify prob-
lems that state-of-the-art approaches fail to identify. We found that the two
experimented approaches struggle at finding most of the issues that developers
fixed and issues belonging to some categories (i.e., “Support for new Android
feature”, “GUI handling”, and “Energy saving”) are never detected.

This paper is an extension of our previous work (Scalabrino et al., 2019)
published at the 16th International Conference on Mining Software Repositories,
MSR 2019, in which we presented and evaluated ACRyL. The qualitative
study represents its main novel contribution.

We release all the data used in both studies as part of a replication package
(Scalabrino et al., 2020), which also includes our tool, ACRyL.

Paper structure. Section 2 presents background information on API
compatibility issues and discusses the related works. Section 3 presents ACRyL,
while Section 4 describes the design and the results of the empirical study
aimed at comparing ACRyL with CiD. Section 5 presents the qualitative study
investigating the root causes behind API compatibility issues fixed by Android
developers. Section 7 concludes the paper after a discussion of the threats to
validity (Section 6).
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2 Background & Related Work

We describe how developers deal with compatibility issues in Android apps.
Afterwards, we overview the related literature.

2.1 Handling API Compatibility Issues in Android

Android apps can be used in devices running different versions (levels) of
the Android API. To deal with compatibility issues, app developers can de-
fine a range of API levels they officially support. This is done by setting
two attributes in the Android manifest file: android : minSdkVersion and
android : targetSdkVersion2. By defining those attributes, developers indi-
cate to the Google Play store which devices can install an app3.

Each version of the Android API can include changes impacting, more or
less severely, the apps’ code. This includes changes to API usage patterns,
deprecated APIs, new APIs (possibly replacing the deprecated ones), and
removed APIs, generally already deprecated a few versions earlier. Therefore,
in addition to the SDK-version attributes in the manifest, Android developers
generally include in their apps code implementing Conditional API Usages
(CAUs), as in the example below:
1 public void setBackground(View view , Drawable image) {
2 if (Build.VERSION.SDK_INT < VERSION_CODES.JELLY_BEAN) {
3 view.setBackgroundDrawable(image);
4 } else {
5 view.setBackground(image);
6 }
7 }

CAUs are code blocks that check the current Android version on which
the app is running and, based on the result of this check, establish the code
statements to execute, including invocations to specific APIs. For example, if
the Android version is lower than X, APIi is invoked, otherwise, a call to APIj
is performed. The version of the API on which the app is running is identified at
runtime by using the VERSION_SDK_INT global attribute or the specific constant
available for each level of the Android API (e.g., VERSION_CODES.JELLY_BEAN)4.
CAUs can be used to handle different types of compatibility issues related to
backward (i.e., potential problems with older SDK versions) and forward (i.e.,
potential problems with new SDK versions) compatibility.

Some compatibility issues cannot be handled using CAUs. Consider, for
example, the class Fragment, which represents a reusable part of an Activity.
Such a class was introduced in API level 11 (Android 3.0): if developers
wanted to use such a class, they would need to drop the compatibility for the
incompatible versions. Indeed, to create a Fragment, developers need to extend

2A third attribute, android:maxSdkVersion, does also exist, but the Android documen-
tation recommends to not declare it, since by default it is set to the latest available API
version.

3https://developer.android.com/guide/topics/manifest/uses-sdk-element
4https://developer.android.com/reference/android/os/Build.VERSION_CODES
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such a class, and this cannot be handled with a CAU. For this reason, the
Android APIs include a support library5 to provide a compatibility layer that
allows developers to normally use framework-related provided in newer releases
without limiting the support to older versions.

2.2 Related Work

Previous research has been done on API misuses — e.g., (Amann et al., 2016,
2018) — and deprecated APIs (Brito et al., 2016; Li et al., 2018b; Robbes et al.,
2012; Sawant et al., 2016; Zhou and Walker, 2016). We focus our discussion
here on works related to Android APIs. The problem of API-induced issues in
Android apps has been widely discussed by practitioners and researchers. For
example, the change- and fault-proneness of Android APIs have been shown to
have a direct impact on the apps quality as perceived by users (Bavota et al.,
2015; Linares-Vásquez et al., 2014; McDonnell et al., 2013).

Besides the change- and fault-proneness of APIs, the problem of inaccessible
Android APIs has also been recently studied by Li et al. (2016). An API is
defined as inaccessible when (i) it is not part of the public API, (ii) it is not
hidden to developers, since it can be used via reflection-based invocations at
runtime or by building customized libraries, and (iii) provides developers with
features not available through any public API method. Their study shows that
inaccessible APIs (i) are widely used by apps’ developers, (ii) are less stable
than public APIs, and (iii) do not provide guarantees in terms of forward
compatibility.

Wu et al. (2017) analyzed compatibility issues in Android by conducting an
empirical study to measure the consistency between the SDK versions declared
by developers in the Android manifest files (i.e., the file declaring the minimum
and target SDKs supported by the apps), and the APIs used in the apps. The
results from the analysis of 24k apps show that (i) declaring the targeted SDK
is not a common practice, (ii) about 7.5% of the apps under-set the minimum
SDK versions (i.e., they declare lower versions than the minimum required by
the used APIs), and (iii) some apps under-claim the targeted SDK versions
(i.e., the developers pick targeted versions above the one supported by the used
APIs).

Luo et al. (2018) focused on API misuses in terms of outdated/abnor-
mal APIs (i.e., whether apps use APIs with the @deprecated, @hide, and
@removed annotations). Their study show that 9k+ out of 10k analyzed apps
suffer from misuses with outdated/abnormal APIs.

Dilhara et al. (2018) presented ARPDroid, an open-source tool to find
and repair incompatible permissions used in a given app. In a related research
thread, Zhang and Cai (2019) searched into developers’ intentions to achieve
apps compatibility and to avoid potential compatibility issues. By comparing
benign and malicious apps, they found that 0.32-1.24% benign apps and

5https://developer.android.com/topic/libraries/support-library
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0.39-16.88% malware apps do not specify android : minSdkVersion (which
Android recommends to specify), while 0.52-6.1% benign apps and 0.14-2.71%
malware apps define instead the android : maxSdkVersion which, as previously
explained, Android does not recommend to specify.

Related to compatibility issues is also the work by Fazzini and Orso (2017)
presenting DiffDroid. The proposed technique supports developers in the
identification of cross-platform inconsistencies (i.e., CPIs) in mobile apps.
DiffDroid combines input generation with differential testing to detect in-
consistencies in the behavior exhibited by an app on different platforms.

We are more interested in compatibility issues due to public deprecated/re-
moved APIs, or to device specific compatibility issues introduced by OEMs
when modifying the original Android APIs and OS. The seminal work by Wei
et al. (2016) represents a first effort to provide developers with a solution
for detecting compatibility issues. The authors manually analyzed the source
code of 27 apps looking for code patterns used by developers to fix/deal with
compatibility issues. Then, the patterns where codified into rules that were
implemented in a tool called FicFinder. While FicFinder had the merit to
start the work on the automatic detection of API compatibility issues, it relies
on 25 manually decoded rules, that can easily become obsolete.

Li et al. (2018a) propose an automatic approach based on static analysis
on the app and Android APIs code to detect potential backward/forward
compatibility issues. Their approach, named CiD, mines the history of Android
OS to identify the lifetime of each API (i.e., the set of versions in which each
API is available). Then, CiD extracts from an app under analysis a code
conditional call graph that (i) links app methods to API calls, and (ii) records
API level conditional checks in the graph edges. The goal is to identify API
invocations in the app that might result in compatibility issues (e.g., an app
declares to support the Android APIs from version 11 to 23, and uses without
conditional checks an API that has been deleted in version 15). CiD is the first
example of data-driven approach to detect API incompatibilities in Android
and, as shown in the extensive evaluation reported by Li et al. (2018a), it
ensures superior performance as compared to FicFinder (Wei et al., 2016).
He et al. (2018) introduced IctApiFinder, a tool which, similarly to CiD,
learns from the evolution of Android APIs and detects potential issues relying
on inter-procedural data-flow analysis to reduce the number of false-positives.
Both such approaches learn rules from the API-side.

As for security-related issues, Bartel et al. (2012) detected permission gaps
using static analysis. Analyzing two datasets of Android applications, the
authors show that some applications suffer from permission gaps. Besides,
Backes et al. (2016) used a static runtime model to study the internals of the
application framework to provide a classification of its protected resources.
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2.3 The Android Studio Lint Tool

Android Studio provides a Lint tool specifically designed to detect generic
issues in Android apps. Such a tool uses static code analysis to detect common
anti-patterns and bad practices, and can detect nine categories of warnings:
accessibility, compliance, correctness, internationalization, interoperability, per-
formance, security, testing, and usability. For each category several rules are
checked, including rules designed to detect possible compatibility issues in apps.
We describe each of them below:

TargetSdkVersion Soon Expiring/No Longer Supported. Google
Play requires (as of August 2018) that apps target at least API level 26. These
two rules check if the app targets previous versions.

Method conflicts with new inherited method. Android SDK devel-
opers may introduce methods to already existing classes in specific versions.
For example, the method m is introduced in the class C in API level 24. It
is possible that the developers of a given app that targeted API levels lower
than 24 defined a class for their app, Cs, which extends C and independently
defined m in such a class. If the app starts targeting API level 24 or above,
the app has an unintentional override of m in Cs. This rule checks such cases.

Minimum SDK and target SDK attributes not defined. This rule
checks whether the app defines both the targetSdkVersion and minSdkVersion
in the manifest.

API Version Too Low. This rule checks whether the minSdkVersion can
be incremented without noticeably reducing the number of devices supported
by the app.

Target SDK attribute is not targeting latest version. This rule sim-
ply checks if the targetSdkVersion is the latest one to avoid that compatibility
modes are used to run it and, thus, to improve its performance in general.

Calling new methods on older versions. This rule checks if a method
used in the app does not exist in a supported API level. Indeed, if this happens
and the app is run on an older version which does not provide such a method,
the app crashes.

Not overriding abstract methods on older platforms. In time, new
SDK versions started to provide default implementations for some methods that
used to be abstract in older SDK versions. If an app targets older versions that
still have abstract methods, it should provide its implementation, otherwise
the app will crash. This rule checks that all the abstract methods of all the
targeted versions are implemented by the app.

Using inlined constants on older versions. If an app references con-
stants that were introduced in later versions, it might happen that the app
has unexpected behaviors on versions that do not define such constants. By
default, the constant values are inlined (i.e., the constant references will be
replaced by their actual values at compile time), but some problems may still
manifest in specific contexts.

Obsolete SDK_INT Version Check. It may happen that CAUs previ-
ously introduced in the code to support some specific API levels are no longer
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needed because the minSdkVersion was increased. For example, if some APIs
are called when the API level is higher than 20 and the minSdkVersion is 21,
the check is useless, since the condition will be always true. This rule check
such cases.

As it can be noticed, each rule checked by the Lint tool provided by Android
Studio is very specific. The only rule that may check problems similar to the
ones checked by state-of-the-art tools, such as CiD, and the tool we define
in this paper, ACRyL, is “calling new methods on older versions”. Such a
rule, however, mostly rely on the developers’ indication to work properly: if
a method x contains an incompatible call and the method y, the only one
which calls x, correctly calls x inside a CAU, the Lint tool still raises a warning.
To avoid this, the documentation suggests to manually annotate methods
such as x with @TargetAPI. However, it may happen that, in a future version,
another method z starts calling x outside a CAU: in such a scenario, the Lint
tool would not raise a warning because of the annotation. The data-driven
solutions described in the literature and the tool introduced in this paper
are, by design, complementary to Lint: while Lint detects important warnings
that data-driven solutions do not aim at finding (such as “method conflicts
with inherited method”), it is designed to mostly detect simple cases, while
data-driven solutions provide support for more complex scenarios, like the one
previously described.

2.4 The Present Work

We compare an API-side approach, CiD, with the data-driven approach
(ACRyL) we devised to overcome some of CiD’s limitations6. While addressing
the same problem using a data-driven solution, ACRyL adopts a different
approach allowing it to identify suboptimal API usages in addition to API
compatibility issues, and to also recommend to developers how to fix the
detected issue relying on the codebase of other apps (client-side approach).
With “suboptimal API usages” we refer to cases in which an app is using
an API available in all the versions supported by the app (thus not being a
compatibility issue) but that, starting from a specific version, can be replaced
by a newly introduced API better suited for the implemented feature. To give
a concrete example, the APIs Bitmap.getRowBytes() and Bitmap.getHeight()
can be used to compute the total number of bytes in a bitmap. In API level
12, the method Bitmap.getByteCount() has been introduced specifically for
this computation, providing a more convenient and clean way of counting the
bitmap’s byte.

CiD cannot detect these suboptimal API usages and recommend proper
refactoring actions, while ACRyL provides full support for them. In addition to
that, ACRyL is able to identify compatibility issues potentially involving mul-
tiple APIs (i.e., API patterns such as the invocation of Bitmap.getRowBytes()

6We used CiD instead of IctApiFinder since it is publicly available.

8



and Bitmap.getHeight()), while CiD only warns developers when a single API
call represents a potential compatibility issue. These ACRyL’s advantages over
CiD are brought by the fact that ACRyL learns from CAUs already defined by
developers in a large set of apps. Thus, it can not only learn the problem (i.e.,
the API incompatibility being addressed with the CAU) but also the solution
(i.e., how to handle it in the code). As we show in our empirical comparison,
these advantages do not come for free, since ACRyL misses many relevant
API incompatibility issues identified by CiD. Our study shows that the two
approaches are highly complementary.

An additional contribution of our work is a qualitative study investigating
the root causes behind API compatibility issues fixed by Android developers.
To the best of our knowledge, this is the first study providing qualitative
evidence of the types of API compatibility issues experienced in Android apps.

3 Approach

We propose ACRyL (Android Client-side Rule Learner), an approach and a
tool to automatically detect API compatibility issues and suboptimal usages in
Android apps. ACRyL is a data-driven approach that relies on CAUs already
defined by developers in a large set of apps (client-side). ACRyL works in
three steps. First, it extracts information about CAUs from a given reference
set of Android apps. Once the set of CAUs is extracted, ACRyL uses them to
infer detection rules and assigns a confidence level to each of them based on
the number of apps from which the rule is learned. Finally, the rules can be
used to detect suspicious API usages in a given app.

3.1 Step 1: Extraction of Conditional API Usages (CAUs)

To extract CAUs, it is necessary to detect the conditional statements that
check the current platform version (e.g., if(version < X)) and, then, the APIs
used in its branches (e.g., if the condition is true, use APIi, otherwise use APIj).
Both these tasks are not trivial and pose many challenges.

As explained in Section 2, the Android APIs provide the Build.VERSION.-
SDK_INT field to check the SDK version of the software currently running on
the hardware device. Thus, looking for conditional statements checking the
value of this field might seem sufficient to identify the CAUs entry points.
However, developers may create utility/delegate functions to get the value of
the SDK_INT field or to check whether the app is running on a specific SDK
version.

Figure 1 shows an example of utility method we found in the analyzed
apps to check whether the SDK version is greater or equal than 23 (i.e., the
Marshmellow Android version). The usage of methods like isMarshmellow()
in a conditional statement allows for checking the SDK_INT value without
explicitly referring to it.
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1 public boolean isMarshmellow () {
2 return (Build.VERSION.SDK_INT >= 23);
3 }

Fig. 1 Example of method to check the SDK version.

Assuming the ability to correctly identify the conditional statements check-
ing (directly or indirectly) the SDK_INT value, it is not sufficient to look into
the body of the if/else branches to detect the API usages, since they may
contain arbitrarily deep calls to methods that only at some point use Android
APIs: if the else branch contains an invocation to method Mi that invokes
method Mj, and this latter invokes the Android API Ai, we must be able to
link the usage of Ai to the non-satisfaction of the if conditional statement.

We use the following approach to detect CAUs. Given the APK of an app,
we convert it to a jar using dex2jar7. Then, we use the WALA8 library to
analyze the obtained Java bytecode. In particular, each method of the app
is analyzed to flag the ones (i) containing a conditional statement checking
the value of the SDK_INT field, and (ii) having a return value depending on
the result of such a checking. For example, the isMarshmellow() method in
Figure 1 would be flagged in this phase, since it returns true if SDK_INT >= 23

and false otherwise. This step aims at identifying all sorts of “utility methods”
that can be defined by the developers to check the SDK_INT value. In this step
we also flag methods in which SDK_INT is assigned to a variable and, then,
the variable is used in the conditional statement. For each flagged method, we
store the mapping between the returned value and the value of the condition.
In our example, given a method invoking isMarshmellow and using its return
value in a conditional statement, we know that the condition will be true if
the app is running on SDK_INT >= 23. In addition to literal int values, the
VERSION_CODE Android constants are also used by developers in compatibility
checks.

With this information at hand, in the second step of our analysis we re-
analyze all methods in an app with the goal of extracting the CAUs. Here we de-
fine a CAU as a triplet (C,At, Af ), where C is the compatibility condition, and
At and Af are the sets of Android APIs called if C is true or false, respectively.
For a given triplet, At or Af can be an empty set (e.g., in case an API is invoked
if a condition is satisfied, while no invocations are done otherwise). For each
method in the app, we check whether it invokes one of the previously flagged
utility methods in a conditional statement or in an assignment expression that
is then used in the condition, e.g., boolean isCompatible = isMarshmellow();
if(isCompatible){...}. If this is the case, the condition in the method is “nor-
malized” to a standard form using the corresponding SDK_INT value in the
conditional statement: if(SDK_INT〈relational_operator〉〈int_literal〉).
For example, the previous conditional statement accessing the isCompatible

7http://code.google.com/p/dex2jar
8http://wala.sourceforge.net/
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variable is converted to if(SDK_INT >= 23){...}. Once the method is nor-
malized, we perform inter-procedural analysis of the conditional statement
branches (e.g., if/else branches) identifying all the calls to Android APIs9
and to collect the signatures of the calls (return type, API class, API method,
and arguments).

We then convert all triplets in the form SDK_INT <= X. This means that
for a triplet having its condition C as > X we invert the condition (≤ X) and
we swap At and Af .

At the end of the process, we obtain a set of triplets (C,At, Af ), with
|At| ≥ 0 and |Af | ≥ 0. Note that, because of the interprocedural analysis, it is
possible that many API calls are included in At and/or Af , even if only a few
of them require the CAU. In this step we keep the whole sequences, that will
be later refined (see Section 3.3).

We do not consider CAUs with a condition check in the form if(version! = X),
because these rules are generally app specific and their meaning depends on the
MinSDK version declared by the apps. To clarify, a CAU (if(version! = 11),
APIi, APIj) can have two different meanings in an app declaringMinSDK = 11
and in an app declaring MinSDK = 4. In the first case, the CAU is probably
needed because versions older than 12 need to invoke APIj, i.e., it is equivalent
to the CAU (if(version <= 11), APIj, APIi). However, since the only version
older than 12 that is supported by the app is 11, the developer used the check
in the form ! = 11. In the second case (MinSDK = 4), the developer is instead
using the check to customize the behavior of the app on a specific version
(11) among the ones supported by the app. Thus, in this case, the checked
condition is not equivalent to if(version <= 11). We preferred to only learn
CAUs that are more likely to represent general issues related to specific SDK
interval versions, i.e., the ones in the form (if(version <= X), APIi, APIj),
and that can be more easily generalized.

3.2 Step 2: Inferring Compatibility Detection Rules

Given the set of CAUs represented as triplets and extracted from hundreds of
apps, we define a detection rule as a CAU that appears in a set of apps S. We
define S the support of the rule. To verify whether a CAU appears in multiple
apps, we first clean and standardize all extracted CAUs.

The pre-processing phase consists in removing noisy Android APIs that
do not bring information useful for the extraction of meaningful rules. We
filter out from At and Af all the logging APIs, e.g., a triplet (≤ 24, Log.w,
Activity.requestPermissions) becomes equivalent to (≤ 24, ∅, Activity.-
requestPermissions). We also exclude all calls to android.content.Context.-
getString(int) and android.content.Context.getSystemService(String),
since these methods are quite generic and appear in many of the CAUs we

9We identified Android APIs by checking the package the class implementing the API
comes from. The list of packages we consider as part of the Android APIs is available in our
replication package.
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extracted, but with different “semantics”. For example, getSystemService
returns the “handle to a system-level service by name”. This method supports
“taskmanager” as parameter value since SDK level 21. Therefore, some apps
may have a check before calling such a method with that specific parameter
value. However, ACRyL extracts rules considering the complete signature of
the method (including the parameter type), but ignoring the parameter value.
While considering the parameter value is an option, this would not allow to
carefully assess the number of apps in which a CAU appears, since two identical
CAUs with different parameter values will be considered unrelated.

Thus, if we consider getSystemService in the extracted CAUs, ACRyL
would create a rule raising a warning when getSystemService is invoked
without checking for a SDK level higher or equal than 21, creating many false
positives (e.g., the parameter value “alarm” is supported since the first version
of the APIs). Once these APIs are removed, the pre-processing ends with the
removal of all CAUs having At = Af (i.e., the set of APIs invoked is exactly
the same independently from the result of the condition check). This is possible
in two cases. First, At and Af differ only for the usage of one of the three APIs
we ignore (e.g., At includes logging statements, while Af does not). Second,
At and Af differ for the value of the parameters passed at runtime that, as
said, is ignored by ACRyL. Finally, we aggregate all the equivalent CAUs and
we define the detection rules as pairs (CAU, S), where S is the set of apps in
which the CAU appears. S is used to compute the confidence level for the rule
as described in Section 3.3.

3.3 Step 3: Rules Definition and Confidence Level

The intuition behind the confidence level is that if a rule appears in many
apps, it is likely to be meaningful and useful to spot real issues. We do not
consider the number of times that a rule appears inside a single app as a good
indication of its reliability, since the same developer could apply a wrong rule
multiple times in her app.

Given a rule Ri = ((Cj , At, Af ), S), we do not compute the confidence
level by simply counting the number of apps in which its CAU (i.e., Ci, At,
Af ) appears, since this results in a strong underestimation of the actual im-
portance of the rule. Consider the case in which we have just two rules: R1 = ((≤
20, {A,B,C}, {X,Y }), {α1, α2}) andR2 = ((≤ 20, {A,C}, {Y }), {α3, α4, α5, α6}).
Here A, B, C, X, and Y represent five different Android APIs, and α1, ..., α6

represent six Android apps. Since the condition checked in the two rules is the
same and R2 is “contained” in R1 (i.e., APIs in R2’s At are contained in R1’s
At, and the ones in R2’s Af are contained in R1’s Af ), every R2 instance is
also a R1 instance. Therefore, by counting frequencies individually, R2 does
not appear in only four apps, but in six apps (α1...α6). Also, it is sufficient to
look for instances of R1 in order to detect issues of the type R2, since R1 is a
generalization of R2. In other words, R2 is likely an instance of R1 customized
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for a specific app. For this reason, we use the following procedure to compute
the confidence level of each rule.

First, we formally define the relationship “is generalization of” as (≺):
R1 = ((C1, At1, Af1), S1) ≺ R2 = ((C2, At2, Af2), S2) if C1 = C2, At1 ⊆ At2,
Af1 ⊆ Af2, and |S1| ≥ |S2|. If R1 appears in less apps than R2 (i.e., |S1| < |S2|),
the relationship does not hold. Indeed, even if more generic, R1 may have
been introduced by mistake in some apps, and the fact that the specific rule
is more popular may indicate that it is the correct way of implementing the
CAU. Also, we consider rules with empty sets for At or Af as special cases;
the generalization relationship (≺) for rules containing empty sets holds only
if the empty set is present in both the rules in the same branch.

For example, the rule R1 = ((≤ 20, ∅, {Z}), S1) is not a generalization of
the rule R2 = ((≤ 20, {A,B}, {Z, Y }), S2).

The fact that a rule does not include any alternative API can have a
completely different semantic. Consider the CAUs (≤ 15, View.setBackground-
Drawable, View.setBackground) and (≤ 15, ∅, View.setBackground): while
the first expresses the alternative usage of two APIs, the second might have
been introduced because some apps decided to use an image as a background
just for specific versions. Starting from this definition, we create a Directed
Acyclic Graph G = (R,E), where R is the set of rules (i.e., nodes), and E is
the set of ≺ relationships existing between rules (i.e., edges). For each pair of
rules < R1, R2 > ∈ R, we create an edge going from R1 to R2 if R1 ≺ R2. We
consider all the connected sub-graphs ρ ∈ G. For each ρ, we keep the root of
the sub-graph (i.e., the most generic rule) and we compute its confidence level
as |

⋃
(CAUi,Si)∈(ρ) Si|, i.e., the cardinality of the set composed by the union of

the apps in which the generic rule and its “child rules” appear. These are the
detection rules ACRyL uses to identify compatibility issues. The more specific
rules are removed, since (i) contained in the more general root rules, and (ii)
unlikely to represent general compatibility issue patterns.

Figure 2 shows an example of ρ. The black boxes report the number of apps
in which each rule is contained (in this example, we assume that each rule is con-
tained in a disjointed set of apps). In this case, we keep only the rule (SDK_INT
<= 20, {Resource.getDrawable()}, {Resource.getDrawable(Theme)}) and we
compute its confidence as the total number of apps in which it and its child rules
appear (i.e., 11) — see the orange boxes in Figure 2. We use the confidence level
as a proxy of the reliability of the rule. We conjecture that rules that appear in
a sufficiently high number of apps are “reliable”, i.e., they represent CAUs that
should be implemented and they are not introduced by mistake. Therefore,
we use a threshold, Mincl, to distinguish reliable rules from unreliable ones.
We only keep into account rules with confidence level higher than Mincl. The
tuning of the threshold Mincl is presented in Section 4.1.3.
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if(SDK_INT <= 20)
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Resources.getDrawable(Theme)
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1
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———
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Resources.getDrawable(Theme)

1
1

View.getResources()
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———
View.getResources()
Resources.getDrawable(Theme)

2
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Context.getResources()
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———
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Resources.getDrawable(Theme)

2
3 Context.getResources()

Resources.getDrawable()
———
Context.getResources()
Context.getTheme()
Resources.getDrawable(Theme)

1
1

Fig. 2 Directed Acyclic Graph mapping the ≺ relationship.

Table 1 Types of API compatibility issues and suboptimal usages detected by ACRyL.
An issue identified with a detection rule R = ((C,At, Af ), S) is classified into one of the
supported types according to the reported heuristic; V indicates the API level subject of the
condition C and MinSDK the minimum SDK version supported by the app under analysis.

Type of Issue Detection Heuristic

Backward
Bug APIs Af are used without a compatibility check and any

API in Af does not exist in MinSDK version.

Improvement APIs Af are used without a compatibility check, all APIs
in Af exist in MinSDK, V < MinSDK, and any API in
Af do not exist before V .

Forward
Bug APIs At are used without a compatibility check and any

API in At does not exist in the latest SDK version.
Bad Smell APIs At are used without a compatibility check and any

API in At is deprecated in the latest SDK version.
Improvement APIs At are used without a compatibility check but no API

in At is deprecated or removed in the latest SDK version.

Wrong Precond. Checked APIs Af and At are used with a compatibility check, but
the checked version is not the expected one V .

3.4 Step 4: Detecting APIs Usage Issues

We use the set of rules inferred from Step 2 and refined in Step 3 to detect
potential API compatibility issues and suboptimal usages. Given an app P
to check and the set of rules R, ACRyL analyzes P ’s bytecode and, for each
Ri ∈ R, looks for usages of the Ri’s At (or Af ) in P that are not “checked”
by Ri’s C in P , i.e., the APIs used in P do not have the compatibility check
expected for those APIs accordingly to Ri. This, combined with the analysis
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of the android:minSdkVersion declared by P in the manifest file (see Sec-
tion 2), allows ACRyL to detect the types of API issues and suboptimal usages
described in Table 1. Table 1 assigns a name to each of the potential issues de-
tected by ACRyL, and it shows the heuristic we use to detect it. When reading
the table, it is important to remember that, since all the checking conditions
in the detection rules have been normalized in the form if(SDK_INT <= V,
At are the APIs that should be used when using V or older SDK versions
(i.e., SDK_INT <= V is true), while the Af should be used for newer versions.
We use the lifetime model extracted by CiD to determine when an API was
introduced and if/when it was removed. We use such information to determine
the severity of a warning (among bug, bad smell, and improvement). We briefly
describe each type of potential issue we detect in the following. To ease the
description, we assume that the issue has been detected with a rule having a
high support and featuring the condition C = (≤ 20, API1, API2), thus having
At=API1 and Af=API2.
Backward compatibility bug. An app invokes API2 without a compatibility
check, and API2 does not exist in the MinSDK version (e.g., 18) declared in
its manifest file. The C conditional check should be added to invoke API2 only
if the app is running in the versions in which API2 is available. This is a severe
bug resulting in the crash of the app.
Backward compatibility improvement. An app invokes API2 without a compat-
ibility check. API2 exists in the MinSDK version declared by the app, thus
does not resulting in a crash. Indeed, the rule refers to a check needed for apps
running in versions older than MinSDK (i.e., MinSDK > 20 in our running
example), in which API2 does not exist. Addressing this warning by implement-
ing C could help the developer to improve the backward compatibility of the
app (i.e., the part of the code using this API will become compatible with
older, currently unsupported, versions).
Forward compatibility bug. An app invokes API1 without a compatibility check
and API1 does not exists in the latest SDK version. The C conditional check
should be added to invoke API1 only if the app is running in the (older) versions
in which API1 is available; API2 should be invoked otherwise. This bug results
in the crashing of the app.
Forward compatibility smell. An app invokes API1 without a compatibility check
and API1 exists in the latest SDK version but is deprecated. Thus, API1 could
be deleted in the future resulting in a bug. The developer can implement C
invoking API2 on the newer SDK versions, thus avoiding future bugs.
Forward compatibility improvement. An app invokes API1 without a compati-
bility check and API1 exists in the latest SDK version and is not deprecated.
However, many apps use C when accessing API1. This might be an indication
that a better API (API2) has been introduced in newer SDK versions to accom-
plish the tasks previously performed using API1. For example, one of the rules
ACRyL identified is (≤ 11, {Bitmap.getRowBytes(), Bitmap.getHeight()},
{Bitmap.getByteCount()}). The getByteCount API has been introduced in
version 12, and returns the total number of bytes composing a Bitmap. This
task was previously performed by using the getRowBytes and the getHeight
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APIs that have not been deleted or deprecated (since they are still used to
accomplish specific tasks). Implementing C in this case allows to take advantage
of improvements (e.g., better performance) ensured by the latest introduced
APIs.
Wrong precondition checked. An app invokes API1 or API2 and it implements a
compatibility check using a version X different than the one expected in C (20
in our running example). For example, if ACRyL finds a CAU (≤ 21, API1,
API2) in a given app it detects a wrong precondition check, since it learned
from other apps that the “right check” to do is SDK_INT <= 20.

4 Study 1: On The Effectiveness of Data-driven Solutions for
Identifying API Compatibility Issues

The goal of this study is to compare two data-driven approaches for the
detection of Android API compatibility issues. We focus on CiD, as state-
of-the-art approach and representative of a API-side learning approach, and
ACRyL, as client-side learning approach. The focus is on the ability of the
experimented techniques to identify issues that are actually fixed by software
developers. The context consists of 19,291 snapshots of 1,170 open source
Android apps.

4.1 Study Design

The study addresses the following research question:
RQ1: What is the most effective data-driven approach to detect Android

API compatibility issues? ACRyL and CiD are compared on the basis of
compatibility issues they detect in real apps and that are fixed by software
developers over the apps’ change history.

4.1.1 Data Collection

The first step to answer our research question is the selection of the subject
mobile apps. We mined F-Droid10, a catalogue of free and open-source Android
apps, to identify apps hosted on GitHub. This resulted in the collection of
1,170 URLs of git repositories. As explained later, we also used these apps to
tune the Mincl threshold aimed at excluding unreliable detection rules learned
by ACRyL. We adopt the study design depicted in Figure 3.

The arrows labeled with “Appi” represent the change history of the apps
considered in our study, with the vertical lines representing the snapshots
from the versioning system. Note that the history of the apps is not aligned,
meaning that not all the apps exist in the same time period (e.g., App1 was
created after App3 and before App2). Given an app, the general idea behind
our experimental design is to run ACRyL on each of its snapshots to detect

10https://www.f-droid.org/
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Fig. 3 Diagram of the study design. The arrows labeled with “Appi” represent the change
history of the apps considered in our study, with the vertical lines representing the snapshots
from the versioning system. We analyze apps on specific snapshots, depending on their
distance from the previous/next release. For ACRyL, we only use rules inferred from past
versions of the apps. We report in red, inside the grey bar, the snapshots from which the
rules are learned.

compatibility issues, and then check whether the issues reported by ACRyL
have been fixed by the developers in subsequent snapshots of the app. In other
words, if ACRyL detects an API compatibility issue in the snapshot S1 and
this issue is fixed in S4 by implementing a conditional API usage, we can
assume that the compatibility issue detected by ACRyL was relevant. In this
way, we can compute the percentage of API compatibility issues detected by
ACRyL that have been fixed by the developers over the change history of
the analyzed apps. This percentage will represent an underestimation of the
relevance of the issues detected by ACRyL. While it is safe to assume that a
fixed issue is relevant for developers, we cannot assume that a non-fixed issue
is not relevant, since developers may simply be not aware of it.

Since ACRyL analyzes the code of existing apps to learn detection rules,
one point to discuss is the set of apps from which the rules are learned before
ACRyL can be run on a given app to analyze. Let us assume that the app
under analysis is App1 in Figure 3. In particular, we want to run ACRyL
on its first and sixth snapshot. For the first snapshot created on date d1, we
extract from each app the latest snapshot existing before d1, and we use these
snapshots to learn the rules. Then, ACRyL is run on the App1’s first snapshot
with the set of rules just learned. In Figure 3 we report in red, inside the grey
bar, the snapshots from which the rules are learned. The same applies for the
analysis of the sixth snapshot. In this way, ACRyL is not using “data from the
future”: We are simulating a real usage scenario in which the rules are learned
on a set of open source apps at date di, and this set of rules is used to detect
API compatibility issues in a date dj > di.
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By analyzing the complete history of an app, we know the issues detected
by ACRyL in each of the analyzed snapshots. Thus, we can verify whether an
issue detected in snapshot S1 has been fixed in a subsequent snapshot, allowing
us to compute the fixing rate of the issues detected by ACRyL. We measure
the fixing rate as |issuesfix|

|issuesdet| , where issuesfix is the number of fixed issues and
issuesdet is the number of issues detected by ACRyL. A few clarifications are
needed for what concerns the computation of the fixing rate. First, if the same
API compatibility issue is detected in snapshots S1, S2, and S3 of the same
app and it is not detected anymore in snapshot S4, we count it as one detected
issue that has been fixed (not as three, since the issue is the same). Second,
assuming again that a previously detected issue is not identified anymore in
S4, we do not consider it as fixed if the method affecting it was deleted (i.e.,
ACRyL does not identify the issue not because it has been fixed, but because
the problematic method was deleted). In this case, we do not count the issue
in the issuesfix set nor in the issuesdet set. Indeed, we do not want to assume
that the issue has been fixed/not fixed, since we do not have any evidence for
that. We prefer to ignore this issue from the computation of the fixing rate
to avoid introducing noise in our results. Finally, it could happen that the
detection rule used in snapshots S1, S2, and S3 by ACRyL to identify the issue
is not part of the ACRyL’s ruleset when it is run on S4. This is a consequence
of the experimental design in which, as previously explained, the set of rules
used to detect issues in each snapshot may change. In this case, ACRyL will
not identify the issue in S4 not because it has been fixed, but because is not
considered an issue anymore in its ruleset. For this reason, we do not consider
the issue as fixed. Summarizing, a detected issue is considered fixed only if the
developers added a check in the code to handle the problematic API(s) or they
removed the API(s) that caused the problem in the first place.

The last thing to clarify for the adopted design is that, for a given app
under analysis, we did not run ACRyL on all its snapshots. This was done
because the process of re-building the ruleset for each snapshot would have
been too expensive in terms of computational resources. Indeed, to build the
ACRyL’s ruleset to analyze a single snapshot S1 we need, for each of the apps
existing before S1, to (i) build, using Gradle, its latest snapshot preceding S1

and (ii) analyze its bytecode for extracting the rules. One simple option would
have been to select one snapshot every n days (e.g., every 10 days). However,
this would have likely resulted in the missing of several compatibility issues
that developers may have introduced and fixed within the n-day interval. Our
conjecture is that compatibility issues are more likely to appear close to the
release of new versions of the Android APIs. Thus, we decided to sample the
snapshots to analyze by taking this into consideration. We defined a set of
dates dates={d1, d2, . . . , dk} from which we extract the snapshots on which
ACRyL is run for each app under analysis. This means, for example, that if an
Appi is the one from which we want to detect compatibility issues, we select
its snapshot closer to date d1 (and preceding it) and we analyze it with the
procedure previously explained; then, we move to the snapshot closer to d2, and
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so on. This set of dates is defined in such a way that more dates are selected
when approaching the dates in which new versions of the Android APIs have
been released. The output of this process is depicted in the bottom part of
Figure 3, in which the white squares represent four Android API releases and
the red dots are the dates selected for the analysis. The selection of the dates
was performed using Algorithm 1, taking as input the dates of the Android
Releases (AR). We defined as maximum interval between two subsequent dates
di and di+1 10 days. This means that when we are far from an Android release,
still we want to analyze at least one snapshot every 10 days.

Algorithm 1 Selection of the analysis dates
1: procedure ExtractDates(AR)
2: cur ← ARfirst

3: dates← list()
4: while cur ≤ ARlast do
5: append cur to dates
6: prev ← maxi(ARi : ARi ≤ cur)
7: next← mini(ARi : ARi ≥ cur)
8: gap← next− prev
9: delay ← min(10, gap

10 )

10: exp← min(cur−prev,next−cur)
0.5×gap

11: cur ← cur +max(round(delayexp), 1)

12: return dates

We start from the date of the first stable Android release (2008/10/22) —
cur in Algorithm 1, line 2 — and from an empty set dates (line 3). Then, the
while loop starting at line 4 is in charge of adding dates to the selected set
until reaching the date of the last stable Android release, 2017/12/04 at the
date of the experiment. In particular, the cur date is added to the set (line 5),
and then the closer android release dates before and after it are stored in prev
and next, respectively (lines 6-7); gap is then used to store the days between
prev and next (line 8) while delay indicates the maximum number of days
that can be skipped between prev and next during the analysis (line 9). It
is always in the interval (0, 10], and it depends on the gap between the two
releases: the larger the gap, the larger the maximum number of days that can
be skipped when cur is far from the release dates. Then, we increment cur, the
current date, by a value exponentially depending on distance between cur and
the nearest release date (i.e., prev or next) — lines 10-11. The closer cur to
one of the release dates, the lower exp, which is always in the interval [0, 1].
In total, we considered 1,594 days, from 2008/10/22 to 2017/12/04, and we
skipped 1,736 days.

By applying this process, we had to discard 502 of the 1,170 apps. This
was due to (i) git repositories not existing anymore, (ii) apps not using Gradle,
and (iii) apps having all builds failing using Gradle. Thus, RQ1 is answered by
considering 668 apps for a total of 19,291 built snapshots. We considered both
Java and Kotlin apps, with an average size of 9.4K LOCs (measured at their
latest snapshot). The first buildable snapshot for the analyzed apps is from
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2014/02/18. We release the list of apps/snapshots we considered (Scalabrino
et al., 2020).

4.1.2 Data Analysis

To compare ACRyL with CiD, we run this latter on the same set of apps’
snapshots used to evaluate ACRyL. We run both tools on a machine with
56 cores and 396Gb of RAM. Since the code analysis performed by CiD is
computationally expensive, we run the tools for a maximum of 1 hour on each
snapshot. If such time exceeded, we killed the process and we ignore that
snapshot. We did this because, in a first attempt, we run CiD without any
time limit, but, on some snapshots, it run for hours, requiring a restarting of
the machine. ACRyL adopts a much lighter code analysis, requiring about
5 minutes, on average, for the analysis of a single snapshot, excluding the
extraction of the rules and the building time of the apps.

We answer RQ1 by reporting the fixing rate of the issues detected by
ACRyL and by CiD. The comparison is done only on the set of apps on which
we managed to successfully run both tools. We also discuss the fixing rate of
the issues detected by ACRyL when considering all the apps on which it was
run (thus not only those on which also CiD worked).

Also, since the goal of our study is to compare different data-driven ap-
proaches, we analyze the complementarity of ACRyL and CiD when detecting
Android API compatibility issues. In particular, we compute the following
overlap metrics:

fixedACRyL∩CiD =
|fixedACRyL ∩ fixedCiD|
|fixedACRyL ∪ fixedCiD|

%

fixedACRyL\CiD =
|fixedACRyL \ fixedCiD|
|fixedACRyL ∪ fixedCiD|

%

fixedCiD\ACRyL =
|fixedCiD \ fixedACRyL|
|fixedACRyL ∪ fixedCiD|

%

where fixedACRyL and fixedCiD represent the sets of compatibility issues fixed
by developers and detected by ACRyL and CiD, respectively. fixedACRyL∩CiD
measures the overlap between the set of fixed issues detected by both techniques,
and fixedACRyL\CiD (fixedCiD\ACRyL) measures the fixed issues detected by
ACRyL (CiD) only and missed by CiD (ACRyL). The latter metric provides
an indication on how an API compatibility detection strategy contributes to
enriching the set of relevant issues identified by another approach. More specif-
ically, a low level of fixedACRyL∩CiD would indicate that the complementarity
of the two approaches is high (only a low number of issues would have been
detected by both the approaches); on the other hand, a high level of such a
metric would indicate that the two approaches find the same kind of issues.

Finally, we qualitatively discuss examples of relevant compatibility issues
identified by one approach and missed by the other, to further investigate the
possibility of combining the two experimented techniques.
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4.1.3 Tuning of the Mincl threshold

We use the extracted data to firstly tune the Mincl threshold, and then to
answer RQ1. In particular, we consider the first part of the analyzed history,
from 2014/02/18 to 2016/06/04 (18 months before the latest analyzed day
2017/12/04) for the tuning of Mincl. Here we analyzed the reliability of the
rules at different Mincl levels. A rule is considered to be “reliable” if once it
becomes part of the rule set (i.e., once it is learned from one or more apps), it
does not disappear in the future (i.e., the apps from which it has been learned,
continue to implement it). Indeed, if a learned rule is removed from the app
from which it was learned, this might indicate that the rule was implemented
“by mistake”. We tune Mincl to identify its minimum value that allows to
discard unreliable rules.

4.1.4 Replication Package

The verifiability of our study is guaranteed through a publicly available repli-
cation package (Scalabrino et al., 2020) including the data used in the study
as well as the ACRyL tool.

4.2 Study Results

Among the 11,863 snapshots considered for computing the results, we had to
forcefully interrupt CiD 1,971 times, while we had to interrupt ACRyL 134
times (also in this case, due to the 1-hour maximum running time we set for
each tool on each snapshot). We did not have any data about CiD for 98 of
the 585 apps considered in our study, while we had no results from ACRyL for
69 apps. Specifically, CiD did not complete its analysis on 29 of the apps that
ACRyL was able to analyze, while the opposite never occurred. We excluded
the 98 apps that could not be analyzed with CiD from the comparison.

4.2.1 Tuning of the Confidence Level

Figure 4 (a) shows, for each confidence level, the total number of disappeared
rules in logarithmic scale.

No rules with confidence level higher than four disappeared in our dataset.
There are, however, a few cases in which rules with confidence 3 or 4 disappear
(11 in total). For example, the rule ((≤ 10, {}, {Window.setFlags}), S) was
first mined on 2014/06/19 from a single app; then, it started to spread and
it reached its peak on 2015/02/23, when it appeared in 4 apps (i.e., |S| = 4).
However, after 2015/04/29 it started to be removed in such apps and it appeared
the last time on 2016/05/24, when only one app implemented it. We found
that Window.setFlags was introduced since the first version of the Android
APIs; however, some of the flags that can be set (i.e., numeric constants used
as parameters) were introduced later. Therefore, the check implemented by
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Fig. 5 Distribution of the warnings detected by the ACRyL (a) and CiD (b), on the x-axis,
in the analyzed apps (y-axis) — apps with at least a warning.

the apps referred to the parameter values used in those specific apps rather
then to the usage of the API itself. Having such a rule would have increased
the number of false-positives detected by ACRyL, since it would have raised a
warning in all the cases in which the API was called before version 10.

Given the achieved results, we set Mincl = 5. We report in Figure 4 (b) the
distribution by confidence level of the rules that did not disappear detected in
the tuning time period.

4.2.2 Comparison between ACRyL and CiD

CiD reported, in total, 5,926 warnings, while ACRyL reported 4,102 warnings.
We noticed that there is a single app (Ultrasonic) for which ACRyL reports
many warnings (2,614, 834 of which are fixed). Given the presence of this
strong outlier in our dataset, we decided to exclude it from our study to avoid
that a single app accounts for most of the considered data points. Excluding
Ultrasonic, ACRyL raised 1,488 warnings, i.e., about a fourth of the ones
reported by CiD.
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Table 2 Comparison between ACRyL and CiD. For ACRyL, we report the results obtained
considering (i) all the warnings, and (ii) only the severe ones. CiD only reports severe warnings
by design.

#Fixed #Warnings Fix Rate

Backward
ACRyL (all) 71 1,202 5.9%
ACRyL (severe) 14 50 28.0%
CiD 877 4,622 19.0%

Forward
ACRyL (all) 25 166 15.1%
ACRyL (severe) 0 0 //
CiD 201 1,222 16.4%

Total
ACRyL (all) 96 1,368 7.0%
ACRyL (severe) 14 50 28.0%
CiD 1,078 5,844 18.4%

We report in Figure 5 the distribution of warnings raised by ACRyL and
CiD. Both tools report a limited number of warnings for most of the apps.
CiD reports at most 10 warnings for 75% of the apps. On the other hand,
because of the lower number of warnings, ACRyL reports at most 10 warnings
for about 95% of the apps. ACRyL reported no warnings at all for 318 apps,
while CiD for 252 apps.

We report in Table 2 the comparison between ACRyL and CiD, also
showing the percentage of fixes for different categories of warnings. Since
ACRyL reports both severe and non-severe warnings, we report the results
considering (i) all the warnings, and (ii) only severe warnings. We do this
because CiD, by default, only reports severe warnings, which are more likely
to be addressed by the developers, since they may result in actual bugs.

The overall precision of ACRyL is 7.0% (15.1% for Forward warnings
and 5.9% for Backward warnings). However, if only severe warnings are taken
into account, ACRyL achieves higher precision compared to CiD (28% vs
18.4%). It is worth noting that ACRyL reports a very low number of severe
issues (50) compare to the ones reported by CiD (4,622): this means that the
higher precision comes at the price of having a lower number of warnings, even
possibly useful. Despite this possible limitation, we show in Section 5.2 that
the estimated recall of the two approaches is comparable.

To analyze more in depth the distribution of the warnings raised by ACRyL,
we report in Table 3 the detailed results for all the categories of warnings that
ACRyL can detect. We do this for (i) all the apps used for the comparison and
(ii) only the apps that ACRyL could analyze. Most of the warnings found by
ACRyL belong to the macro-category “Backward”. Specifically, the warnings
from the category “Backward Bug” are among the most frequently fixed ones
(28%) as previously reported, while the backward “improvements” rarely get
fixed (only 5% of times). ACRyL did not report any “Forward Bug” warning.
This is probably due to the fact that Android APIs are seldom completely
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Table 3 Performance of ACRyL by categories of warnings computed on (i) the apps
analyzed by both the tools and on (ii) all the apps analyzed by ACRyL. The bottom rows
report aggregated results for severe warnings (bugs) and non-severe warnings (improvement
and bad smell).

AppsCiD ∩ AppsACRyL AppsACRyL
#Fixed #Warnings Fix Rate #Fixed #Warnings Fix Rate

Backward
Bug 14 50 28% 14 50 28%
Improvement 57 1,152 5% 59 1,220 5%
Total 71 1,202 5.9% 73 1,270 5.7%

Forward

Bug 0 0 // 0 0 //
Bad Smell 5 5 100% 5 5 100%
Improvement 20 161 12% 22 196 11%
Total 25 166 15.1% 27 201 13.4%

Wrong Precond. Checked 0 0 // 0 0 //

Severe warnings 14 50 28% 14 50 28%
Non-severe warnings 82 1,318 6% 86 1,421 6%

0.000

0.002

0.004

0.006

0 50 100 150 200 250 300 350 400 450 500
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Fig. 6 Distribution of days needed to fix warnings.

removed. Besides, Android provides compatibility layers that allow developers
to avoid forward compatibility problems even without modifying the code, at
the price of a performance overhead. We found, instead, that the developers
fixed all the “Forward Bad Smell” warnings reported by ACRyL, which shows
that this type of issues are worthwhile to detect.

We report in Figure 6 the distribution of the fixing time (in days) for both
the approaches. The fixing time indicates the “survivability” of the compatibility
issue in the app. While the distribution shows a very similar trend (most of the
warnings get fixed in less than 100 days), the warnings reported by ACRyL
get fixed quicker (85.5 days vs 134.8 days, on average).

Finally, Table 4 shows the overlap metrics of the fixed compatibility issues
detected by the tools. Table 4 clearly highlights that the two techniques are
highly complementary. Indeed, only a small part of the warnings (0.9%) are
reported by both tools, while the remaining warnings are only reported by one
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Table 4 Overlap between ACRyL and CiD.

fixedCiD\ACRyL fixedACRyL\CiD fixedCiD∩ACRyL

Backward 887 (93.0%) 56 (5.9%) 11 (1.2%)
Forward 201 (91.4%) 19 (8.6%) 0 (0.0%)

Total 1,088 (92.7%) 75 (6.4%) 11 (0.9%)

of the two tools. More specifically, ACRyL reports 75 new warnings that CiD
did not report.

4.2.3 Examples of Warnings

An example of warning detected by both the approaches concerns the Kandroid
(GH: andresth/Kandroid) app. ACRyL reported a “Backward Improvement”
warning when analyzing the snapshot from 2017/03/02. Then, on 2017/04/25,
the developers reduced the minSDK (from 21 to 17) to improve the compatibility
of their app; however, doing so, the warning became a critical bug, since the
API they used was not supported in Android versions before 21. This was fixed
on 2017/05/0111. CiD was able to catch the same problem, but only when it
became a critical bug (i.e., when developers reduced the minSDK value).

An example of warning detected only by CiD is from Dandelion (GH:
gsantner/dandelion). Such a warning belongs to the category “Forward”. Even
if the line of code concerned was present since the first commit of the app, CiD
raised the warning for the first time on 2016/06/07, probably because the API
was still supported until then. The bug was fixed on 2016/06/0912. ACRyL
did not learn at all a rule for this API, since only a few apps implemented a
CAU for it.

Finally, an example of warning detected only by ACRyL concerns the
Rick App (GH: no-go/RickApp). ACRyL reported a Backward Bug on
2016/12/11. Such a warning was present since the first release of the app
and it was fixed on 2016/12/1713. This bug involved Android versions below
4.4.4 and the author explicitly says in the README that the app was not
tested for such Android versions.

4.3 Discussion

Both API-side-learning (represented by CiD) and client-side-learning (repre-
sented by ACRyL) approaches have their own advantages and disadvantages.
In terms of quantitative results, the overall precision of ACRyL drops from
23.4% to 7.0%. This may suggest that ACRyL is more “noisy”, i.e., it reports

11https://github.com/andresth/Kandroid/commit/0b0d04
12https://github.com/gsantner/dandelion/commit/af0070
13https://github.com/no-go/RickApp/commit/05efde
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many non-relevant warnings. However, when considering only the severe warn-
ings (Backward and Forward Bug), ACRyL achieves 28.0% precision, while
CiD achieves 18.4%, as highlighted in Table 2. Note that CiD only reports
severe warnings. Our results show that only 6% of non-severe warnings are
fixed by developers.

In summary, the main advantages of using API-side approaches are the
following:

A1: They identify more “Forward” warnings. This happens because
they know which APIs disappear. Since Android APIs rarely disappear, it is
more difficult to learn these rules client-side. This is why, for this category of
warnings, client-side approaches are less effective.

A2: They are easier to keep up-to-date. Keeping up-to-date an API-
side approach requires to run a tool every time a new version of the APIs
is released. On the other hand, client-side approaches require a continuous
monitoring of a relatively large set of apps. This operation is more resource-
intensive.
Client-side approaches offer advantages as well:

C1: They provide fixing suggestions. Learning from big code-bases,
client-side approaches allow to suggest a fix for a given compatibility issue.

C2: They support API sequences. While API-side approaches detect
compatibility issues for a single API call at a time, client-side approaches can
detect issues in API sequences.

In summary, there is no clear advantage in using only one approach over the
other. This is particularly evident for the timeliness with which the approaches
can theoretically detect issues: while client-side approaches can detect issues
that may become bugs (as shown in the examples), they need to learn a rule
for that and, therefore, many apps need to implement such a rule. On the other
hand, API-side approaches can potentially learn a rule as soon as a new API
version is released. What is evident from our results is the high complementarity
of the two techniques, which points to the possibility of combining the two
learning approaches in future.

Summary of RQ1. API-side and client-side approaches are comple-
mentary. Future research may be directed at combining such approaches.

5 Study 2: Investigating the Root Causes behind Compatibility
Issues

The outcome of our first study showed that: (i) there is a high complementarity
between client-side and API-side data-driven approaches to detect compatibil-
ity issues, thus suggesting possible advantages coming from a hybrid approach
combining both of them; and (ii) both techniques have their drawbacks, indi-
cating the need for more advanced approaches in this area. In the first study we
evaluated the effectiveness of the tools in terms of the percentage of detected
issues that disappeared in time. In other words, we estimated the precision of
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the tools. In this second study, to foster research in this field, we build empiri-
cal knowledge needed to design better compatibility issue detectors. First, we
define a taxonomy of root causes of compatibility issues; then, based on this
information, we compute how many issues that are fixed by the developers
could have been detected by the tools (recall): we do this to find categories
of issues that can not be detected by the state-of-the-art approaches and that
require the definition of new techniques.

5.1 Study Design

We manually analyze 500 pull-requests (PRs) performed by developers to
address compatibility issues, with two goals: (i) documenting the root causes
behind these issues and the fixing strategies applied by developers (i.e., how
the issue has been fixed), and (ii) estimating the capability of the tools in
finding the compatibility issues fixed by the developers (recall). In particular,
we address the following research questions:

RQ2: What are the root causes of compatibility issues? We want to under-
stand what are the common causes behind compatibility issues experienced by
developers in Android apps. As a result, we build a taxonomy of “compatibil-
ity issue types”, and we qualitatively discuss interesting examples and fixing
strategies applied by developers.

RQ3: To what extent can data-driven techniques detect compatibility issues
fixed by developers? We want to understand (i) if the data-driven techniques
considered in our paper would have found real compatibility issues addressed
in the PRs and (ii) which categories of the taxonomy we define with RQ2 are
covered and which ones are not.

5.1.1 Data Collection and Analysis

We consider the same 668 open-source projects used in our previous study
(Section 4). As a first step, we extracted from the GitHub repositories of the
subject apps all the PRs that were accepted and merged into the master branch
before July 2019. In total, we extracted 41,381 PRs. The apps we considered
targeted different API levels in their history, ranging from 1 to 29. Then, we
automatically selected from this set the PRs that are likely related to the fixing
of compatibility issues. To do this, we used a keyword-matching mechanism
on the entire PRs, looking for PRs reporting relevant keywords. While the
complete list of keywords is available in our replication package (Scalabrino
et al., 2020), a few representative examples are: incompatib*, compatibility
issue, compatibility problem, new sdk, api level, etc. On top of this, we also
included all code-names of the existing Android versions (e.g., Nougat, Lollipop,
Marshmellow). Note that the keyword-matching mechanism is likely to return
false positives (i.e., PRs unrelated to the fixing of compatibility issues). For
example, with our keywords matched many PRs simply reporting the text
“Tested on Android Nougat” because programmers tested an application to
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Annotator Experience
Java Android

Annotator 1 10 years 4 years
Annotator 2 15 years 3 years
Annotator 3 18 years 6 years
Annotator 4 6 years 1 years

Table 5 Experience of the annotators who participated in Study 2.

verify the presence of an API compatibility issue. However, this is not a problem
for our study since we will manually analyze the selected PRs, excluding the
false positive ones. Also, while our list of keywords is certainly not exhaustive
and likely to miss relevant PRs, our goal here is not to be comprehensive, but
only to identify a good number of PRs to manually inspect in our study. In
total, we automatically extracted 1,775 PRs. From these, we randomly sampled
500 PRs that we manually analyzed.

Note that the choice of only considering PRs, ignoring, for example, commits
performed with the aim of fixing a compatibility issues but not subject of a PR,
was due to two reasons. First, PRs often report the developers’ discussion, that
can help our manual analysis by providing additional information about (i)
the compatibility issue being fixed, and (ii) the adopted solution. Second, most
PRs are subject of code review activities, reducing the chance of considering in
our study wrong/partial fixes.

The manual analysis was conducted by the authors of the paper. We report
in Table 5 the Java and Android experience of such annotators. To support the
manual analysis on the 500 PRs, we developed a web application presenting
to the annotator (i) the title of the PR, (ii) the complete list of keywords
matched in the PR, and (iii) the link to the PR on GitHub. Each PR was
assigned to two different annotators, that were asked to report: (i) whether
the PR regarded a compatibility issue (i.e., discard false positives); (ii) the
root cause of the compatibility issue (e.g., usage of a deprecated API); and
(iii) the strategy used to fix the issue (e.g., adding a SDK_INT check). We did
not define a fixed set of possible values for such fields; instead, the annotators
were free to define proper “tags” expressing, e.g., the root cause behind the
inspected PR. To define these tags, the annotators manually inspected the PR
discussion and the diff of the commits it included.

Every time the authors had to tag a PR, the web application also showed the
list of tags created so far, allowing the tagger to select one of the already defined
tags. In a context like the one encountered in this work, where the number of
possible tags (e.g., root cause behind the compatibility issue) is extremely high,
such a choice helps using consistent naming while not introducing a substantial
bias. All annotators were instructed to use the Unclear tag in case the root
cause and/or the implemented solution could not be understood.

After each PR was tagged by two annotators, 192 PRs had a conflict (i.e.,
a different tag used for classifying the root cause and/or the applied solution).
These conflicts were solved through an open discussion among the involved
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Fig. 7 Example of page considered to complement the taxonomy through the Android
release notes.

annotators. Then, two of the authors performed a card sorting activity (Spencer,
2009) for the tags used to classify the root cause and the fixing strategy. In this
phase, similar tags having the same meaning were merged and the remaining
tags were grouped into categories. The result of this activity is represented by a
hierarchical taxonomy of root causes behind compatibility issues (see Figure 8).
Each annotator worked about 3 hours per day, for a total of 8 days.

The PRs we analyzed may not cover all the possible causes of compatibility
issues. Therefore, we also complemented our taxonomy using the Android
release notes. To do this, we first extracted all the available documentation
pages regarding compatibility issues: we started the analysis from the Android
web page dedicated to the release notes14, and then we selected the sections
that contained the word “change” for all the Android versions listed on the left
column (e.g., “Android 5.0 changes”). Figure 7 shows an example of link we
followed to access the release notes of Android 5.0. Then, two of the annotators
that originally categorized the PRs independently read and categorized the
release notes provided by the Android developers. At first, they tried to use
the categories from the taxonomy; then, if no category suited the specific
compatibility cause, they introduced new categories in the taxonomy. In total,
there were 7 conflicts: they were resolved after a short discussion. We analyzed
Android release notes from 5.0 (no previous release note was available) to 10.0
(the latest stable release to the date of the analysis), for a total of six major
releases.

We answer RQ2 by presenting the obtained taxonomy, discussing interesting
examples and fixing strategies applied by developers for each of the main
categories. The raw data, including the root cause applied in each PR as
well as the identified fixing strategy, are available in our replication package
(Scalabrino et al., 2020).

14https://developer.android.com/preview
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To answer RQ3, we run the approaches we compared in the first study, i.e.,
CiD (API-side) and ACRyL (client-side), both before and after the merge
of the pull requests. More specifically, given a pull request P , we first find its
merge commit c through the GitHub APIs. The merge commit represents the
commit on the master branch in which the changes made on the PR branch
were merged into the master. We also kept into account the first parent of
c, c∼1, i.e., the commit on the master branch that did not have any of the
changes applied by the developers in the PR branch. We run both the tools on
c and c∼1. We say that an approach correctly detects a compatibility issue if at
least one of the problems reported in c∼1 was not reported anymore in c. We
run the tools also after the merge because the method in which the tools report
the warning can be different from the one modified by the developer in the
fix. We report the cases in which each of the tools (ACRyL and CiD) could
find the compatibility issue discussed in the PRs, i.e., the ones in which (i) at
least a warning reported in the version before the merge of the PR disappeared
and (ii) it was related to the fix of the issue reported in the PR. To do this,
we use the same experimental design described in Section 4. In the first study
we built a collection of rulesets at specific dates in the past that we used to
run ACRyL at future dates. In this case, we used the same rulesets to run
ACRyL: given a commit to analyze (either the one before of after the merge
of a given PR), for ACRyL we used the ruleset built at the nearest date that
preceded the commit time. For example, if the commit was dated 2016/02/27
and we had rulesets built at 2017/02/26 and 2017/03/01, we pick the former
to avoid learning from the future. Similarly to the first study, for CiD we used
as target platform the latest one available at the date of the analyzed commit.
We excluded from the analysis the PRs for which (i) the merge commit of the
PR could not be found in the repository (55 cases), and (ii) the build failed at
either the commit before or after the merge of the PR (63 cases). In total, we
could not analyze 118 PRs out of the 230 PRs we considered in our taxonomy.
We report the number of issues detected by both tools for each category.

5.2 RQ2: What are the root causes of compatibility issues?

Among the 500 PRs we analyzed, we classified 257 of them as false positives,
i.e., PRs that did not actually regard compatibility issues. Of the remaining 243
PRs, 13 received the unclear tag, indicating that we could not understand the
root cause behind the compatibility issue. Thus, our hierarchical taxonomy of
root causes behind compatibility issues (Figure 8) is based on the classification
obtained for 230 PRs. We discuss the first- and second-level nodes of the
taxonomy by presenting qualitative examples and reporting the fixing strategies
adopted by the developers. We report in Table 6 some statistics about the
apps from which we extracted the 230 PRs that regard compatibility issues. It
can be noticed that they are popular in the GitHub community (∼1K stars,
on average), they have a large number of contributors (∼49, on average), and
they are quite big (∼24k LOCs, on average).
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Application PRs Stars Contributors LOCs

AnkiDroid 26 2,442 161 51,466
Seafile Android Client 10 370 33 33,914
KISS 9 1,414 135 10,698
Amaze File Manager 8 2,823 105 39,223
Tusky 8 832 113 28,551
AntennaPod 7 2,717 122 51,323
syncthing-android 7 1,297 42 9,031
NewPipe 7 7,813 323 37,129
DuckDuckGo Android 6 1,172 27 31,741
K-9 Mail 6 4,831 210 102,256
Wikimedia Commons Android 5 562 199 28,075
Tachiyomi 5 6,458 71 28,365
Nextcloud Android 5 1,700 115 72,420
wallabag 5 298 65 14,165
LeafPic 4 2,998 33 14,379
Open Food Facts 4 436 86 30,586
Silence 4 1,022 134 41,534
Riot-Android 4 1,285 235 66,418
Kore - Kodi/XBMXC remote for Android 4 379 75 37,834
Slide 3 1,185 71 79,051
Others (average) 1.4 720 39 19,039

Total average 2.6 1,014 49 23,634

Table 6 Statistics about 20 out of 94 apps considered in Study 2, i.e., the ones with the
highest number of PRs. We only report aggregate statistics for the others for space limitations.
The complete list is available in the replication package (Scalabrino et al., 2020).
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5.2.1 Android APIs

The vast majority of the problems fixed in the PRs we analyzed (199 PRs)
were caused by changes in the Android APIs. We identified many different
causes and we divided them into Functional problems, GUI handling, API
security, Support for new Android features, and Energy saving. We discuss
such categories below in details. For each category, we first provide a broad
description of the cause, then we discuss some examples of PRs and we detail
the Android release notes that contain references to such kind of possible issues.
Finally, we provide information about the fixing strategies adopted to fix the
issues: we only discuss the most common ones, without explicitly reporting
details about the ones very specific to the app.

Functional problems. We say that a compatibility issue is caused by a
functional problem when it relates to generic changes in the Android APIs
that modify some of their functional aspects (e.g., the behavior of an API
changes). Most of the causes behind the compatibility issues we analyzed are
functional (105 PRs). Several of these problems were caused by backward-
compatibility issues (30 PRs): the app works well on new platform versions
but, when it is executed on older versions, it presented bugs (e.g., it crashed
when some actions were performed by the user). In general, we say that
there is a backward-compatibility issue when the problem appears in older
Android versions because the app uses APIs not yet available in such versions
(e.g., the API was introduced in version 26 and the app supports version 25).
The most common cause is that some used APIs were simply not available
in older SDK versions. For example, PR #4897 of the app Anki Android15

fixed a bug occurred because the method setContentDescription of the class
android.widget.RemoteViews was not available for the SDK versions below 15.
For this reason, the authors added a CAU to call such a method only when the
app was executed on more recent Android versions. We found two additional
functional categories by analyzing the Android release notes: Runtime-related
issues and NDK-related issues. The first one refers to possible issues due to
major changes in the runtime environment in which the apps are executed. For
example, in version 5.0 the old runtime environment, Dalvik, was replaced by
ART (Android Runtime). Besides, in version 6.016, a possibly breaking change
was done to ART: “On previous versions of Android, if your app requested the
system to load a shared library with text relocations, the system displayed a
warning but still allowed the library to be loaded. Beginning in this release, the
system rejects this library if your app’s target SDK version is 23 or higher.”.
NDK-related issues, instead, regard the Native Development Kit that may be
used by developers to include native components in their apps. NDK may help
developers reuse libraries written in other languages (e.g., C++) and may
improve the performance of some functionalities. An example of NDK-related
change that may introduce compatibility issues is provided in the release notes

15https://github.com/ankidroid/Anki-Android/pull/4897
16https://developer.android.com/about/versions/marshmallow/android-6.0-changes
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of Android 7.017: “Starting in Android 7.0, the system prevents apps from
dynamically linking against non-NDK libraries, which may cause your app to
crash.” We could not find any issues in the PRs we analyzed regarding these
two categories of issues. This is probably because (i) runtime-related issues are
rare, and (ii) few apps use Android NDKs.

A lower — but still substantial — number of problems we analyzed were
caused by forward-compatibility issues (17 PRs): the app worked with older
SDK versions but, when a new SDK version was introduced and it was targeted
by the app, some bugs manifested. In general, we say that there is a forward-
compatibility issue when the problem appears in newer Android versions because
old APIs not available anymore (e.g., the API existed up to version 25, then it
was removed, and the app targets version 26). In seven cases, deprecated APIs
were replaced by developers with new APIs to avoid the bug manifestation. In
some other cases, additional API calls were necessary to use Android features
that were available also in older Android versions (6 PRs). Finally, we found
four cases in which some APIs were removed in new SDK versions and, therefore,
this resulted in a crash; for example, in PR #45 of Silence IM18, the developers
needed to define both a normal and a legacy MMS handler, since some APIs
for MMS handling were modified since Android 5.1, together with other carrier
services19.

The release notes of four out of six Android versions (5.0, 6.0, 9.0, and
10.0) mention the deprecation or the removal of some APIs. For example, in
the release notes of Android 6.0 it can be found that such a version “removes
support for the Apache HTTP client”. The Android developers suggest: “If your
app is using this client and targets Android 2.3 (API level 9) or higher, use
the HttpURLConnection class instead. This API is more efficient because it
reduces network use through transparent compression and response caching,
and minimizes power consumption.”16

Besides such two macro-categories, one of the most common functional
causes of compatibility issues was a change in API signature and/or behavior
(47 PRs): the features available were the same in different Android versions,
but either the signature or the behavior of the API changed. PR #160 of the
andOTP app is an interesting example of this20: the app asks a PIN and it
allows the user to generate OTPs (One Time Passwords) only if the PIN is
correct. However, on more recent Android versions, the app crashed if no PIN
was inserted and it restarted allowing the user to generate OTPs. This problem
was caused by the fact that an IllegalArgumentException was thrown in
newer API versions, and it was not handled by the app, indirectly introducing a
security problem. Almost all the Android release notes we analyzed introduced
some changes in the behavior of the APIs. The only exception is represented
by the version 7.0, which introduced fewer compatibility-related changes with

17https://developer.android.com/about/versions/nougat/android-7.0-changes
18https://github.com/SilenceIM/Silence/pull/45
19https://developer.android.com/about/versions/android-5.1
20https://github.com/andOTP/andOTP/pull/160
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respect to the others. For example, the release notes of Android 8.0 state:
“The getSaveFormData() method now returns false. Previously, this method
returned true instead.”. Any application relying on the return value of such a
method needed to handle this change.

Not surprisingly, our results show that only a minority of compatibility
issues were caused by bugs in Android APIs (9 PRs). For example, PR #731 of
Tusky app added a workaround for a bug present in Android 821; interestingly,
a developer commented: “Should a similar workaround be applied to any other
text editors? ”. This suggests that ACRyL would have been useful for the
developers since it would have allowed them to detect and fix other possible
compatibility issues in the app.

To fix the issues that have a functional impact on the app, the developers,
in most of the cases (42 PRs), add or update a check to SDK_INT and they
specify different behaviors based on the current platform (i.e., they implement
a CAU). This confirms that analyzing CAUs is useful to acquire knowledge
about wrong API usages and fixing patterns. Some of those PRs also use
annotations such as @TargetApi in combination with CAUs. We also found
that, for a non-negligible amount of PRs (31), the developers fix the issue
without implementing a CAU, but simply using a generic fix.

Lesson 1. CAUs are the main source of information that can be used
by data-driven detection techniques. However, other information, such
as annotations, could be exploited to develop better detection tools.

API security. A compatibility issue is caused by API security aspects
when it is related to changes in security aspects in the Android platform (e.g.,
permission handling). This is the second most common cause of compatibility
issues (43 PRs). Most of the issues were caused by problems with the Android
permission handling (25 PRs): in some cases, new permissions were required to
access some resources (21 PRs); in some others, permissions were not required
anymore (4 PRs). For example, in PR #76 of Tickmate22, the developers only
required a permission for accessing external storages for older SDK versions,
since this permission was not required anymore in newer SDK versions.

Some issues were caused by a stricter Android access policy to resources (7
PRs). It is worth noting that while the previously described issues could be
fixed by simply adding/removing permissions requests, such issues were harder
to fix, because Android did not allow the access to some resources anymore.
For example, in PR #15 of the app PortKnocker23, the developers needed to
stop using the URI schema “file:” since Android did not allow this anymore in
newer versions.

Finally, we found two cases in which the problem was caused by the fact that
new SDK versions did not allow non-SSL encrypted web traffic. For example,
in PR #3053 of Firefox Focus24 the developers incidentally noticed that, after

21https://github.com/tuskyapp/Tusky/pull/731
22https://github.com/lordi/tickmate/pull/76
23https://github.com/xargsgrep/PortKnocker/pull/15
24https://github.com/mozilla-mobile/focus-android/pull/3053
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targeting a new Android SDK version, the browser was not allowed the access
non-HTTPS web pages anymore. To fix this problem, the developers needed to
explicitly disable this new Android security feature.

The Android release notes often reported security-related changes that could
be the cause of compatibility issues. Most of such changes involved permissions
(5.0, 6.0, 9.0, and 10.0). For example, Android 6.0 introduced runtime permission
checks: “On your apps that target Android 6.0 (API level 23) or higher, make
sure to check for and request permissions at runtime. [...] Even if your app
is not targeting Android 6.0 (API level 23), you should test your app under
the new permissions model.”25. Besides permissions, many changes involved
other generic security issues, such as the deprecation of insecure cryptographic
algorithms. Many changes also regarded privacy-specific issues: for example,
in the release notes of Android 8.0 it can be found: “In Android 8.0 (API
level 26) and higher, queries for usage data return approximations rather than
exact values. The Android system maintains the exact values internally, so
this change does not affect the auto-complete API.”26 Apps that assume that
such values are exact rather than approximated may encounter functional
compatibility problems.

To fix issues involving API security, also in this case the developers mostly
used CAUs (14 PRs). As expected, in this case, many fixing strategies involve
changes to permissions requests/checks (9 PRs).

Lesson 2. To improve the performance of compatibility issues detection
tools, security-specific checks should be implemented. Above all, it could
be possible to mine information about permissions required to use APIs
for different SDK versions (see, e.g., Backes et al. (2016) and Bartel
et al. (2012)).

GUI handling. We say that a compatibility issue is induced by such a
category of causes when GUI handling changes in different versions of the
Android platform and some GUIs of a given app are not working as intended
because of this. We found 18 PRs for which the cause could be traced to such
a category. In some cases (11 PRs), the issue was caused by a difference in the
GUI rendering. For example, in PR #286 of QuasselDroid27, the developers
had to change the text style assigned through a span markup object since
the previously used one made the text invisible in new versions of the SDK.
In some other cases (4 PRs), new SDK versions provided different policies
for handling some specific GUI components. Finally, we found cases in which
GUI properties were deprecated (1 PR) or in which GUI components were
not available in older Android versions (1 PR). Compatibility issues can arise
also when the behavior of the Android GUI handling system is modified. For
example, in OpenHAB, the developers heavily relied on the internal hierarchy
of GUI components to implement a feature. Since such a hierarchy changed

25https://developer.android.com/about/versions/marshmallow/android-6.0-changes
26https://developer.android.com/about/versions/oreo/android-8.0-changes
27https://github.com/sandsmark/QuasselDroid/pull/286
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unexpectedly in newer Android versions, in PR #59228 the developers needed
to fix the resulting bug.

The release notes of most Android versions (except for version 6.0) include
minor changes to GUI-related elements that may cause compatibility issues.
Such issues may be minor (e.g., less aesthetically appealing elements due to
the usage of wrong colors) or even functional issues: for example, after 9.029,
“Views with 0 area (either a width or a height is 0) are no longer focusable.”
Apps relying on the the fact that views with 0 area can receive focus may
contain bugs since such a version.

The fixing of issues involving the GUI required, in several cases (7 PRs), a
simple change to the XML files describing the GUI. In other words, in many
cases it is not necessary to define different strategies for different Android
versions. On the other hand, we found a good amount of cases (6 PRs) that
implement CAUs to fix GUI issues.

Lesson 3. Detection of GUI-related compatibility issues is challenging
due to the fact that, in most of cases, a generic fix is needed, and we did
not observe any significant pattern characterizing these bugs. Learning
from CAUs can only help in a minority of the cases.

Support for new Android features. We say that a compatibility issue
is caused by a new Android feature if the introduction of such a feature affects
some functionalities of the app. We found 33 PRs aimed at fixing such kind of
issues. This happens mostly when new features are introduced in previously
existing parts of the system. For example, the Android notification system was
changed in Android 8: the notification channels were introduced to allow users
ignoring entire groups of notifications. Some apps targeting Android 8 and
above which did not adapt to notification channels stopped working as intended.
An example can be found in the PR #794 of Wallbag30: when the developers
updated the target SDK version of their app, notifications stopped working
for Android 8 and above. To fix this issue, the developers had to introduce
notification channels. The problem experienced in this app was probably related
to the way the older notification APIs were used, but the developers did not
find the root cause of the problem.

The release notes of most Android versions explicitly mention the new
features provided to the users that are accessible to the developers through
some APIs. For example, in Android 9 it was introduced a feature that allows
apps to enumerate cameras: this happened mostly because smartphones with
two or more rear cameras arrived on the marked. The only version that does
not include such changes is Android 7.

To fix such issues, developers introduce CAUs in most of the cases (7 PRs),
but they also often update the app Manifest, e.g., they change the target SDK
version (6 PRs) or they apply a generic fix which does not depend on the
platform (6 PRs).

28https://github.com/openhab/openhab-android/pull/592
29https://developer.android.com/about/versions/pie/android-9.0-changes-28
30https://github.com/wallabag/android-app/pull/794
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Lesson 4. New Android features, mostly the ones that involve previ-
ously existing systems, can introduce compatibility issues. Detecting
such issues is particularly difficult even for developers.

Energy saving. Compatibility issue can be caused by changes in the energy
saving policies adopted by Android, unexpectedly affect some functionalities of
the apps. We found a single PR that addressed an issue with energy consump-
tion, i.e., PR #311 of Wallabag31. In such a PR, the developers needed to use
a JobScheduler to avoid battery usage warnings in newer Android versions.
Such a problem was fixed by introducing a check on the SDK_INT. Android
release notes mentioned possible battery-related issues for 3 Android releases
(i.e., from 6.0 to 8.0). Indeed, Android 6.0 introduced the Doze mode, which
forcefully pauses the execution of some apps. Such a feature may result in
collateral functional problems with the apps that are stopped/paused by the
operating system: “This release introduces new power-saving optimizations for
idle devices and apps. These features affect all apps so make sure to test your
apps in these new modes”32.

Nevertheless, we found references to possible compatibility issues due to the
changed energy saving policies in the release notes of three Android releases,
i.e., 6.0, 7.0, and 8.0. Energy saving can have an effect on the functionality of
Android apps: new platform versions could change the policies so that some
operations (e.g., the ones requiring the usage of the Bluetooth sensor) are
temporarily suspended in some occasions. Apps may stop working due to such
changes. It is possible that the low quantity of PRs we found belonging to such
a category is due to the fact that such issues are hard to detect, reproduce and
fix. Another possibility is that only few categories of apps may be affected by
such changes (e.g., the ones that require a constant connection to IoT devices).

Lesson 5. While the Android release notes highlight that changes in
energy saving policies can have an impact on some apps, we found only
one PR addressing such a kind of problem. It is unclear how such issues
are fixed and how automated approaches may detect them.

5.2.2 External causes

While most of the compatibility issues are caused by changes in the Android
APIs, we found cases in which they had different causes (31 PRs). The causes
could be classified into three categories: those related to the App, to the
Dependencies, and to the Build & Distribution of the app.

App. Compatibility issues are caused by the app when they are not related
to changes in the Android APIs, but rather to errors introduced in the past.
While the root causes of such issues are clearly still related to changes in
the Android APIs, we use such a category for the cases in which the com-
patibility issue was related to bad practices in the development of the apps

31https://github.com/wallabag/android-app/pull/311
32https://developer.android.com/about/versions/marshmallow/android-6.0-changes
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themselves (e.g., usage of a deprecated method that is later removed from
the Android APIs). We found 13 PRs that addressed such kind of issues. In
six cases, these were related to functional bugs, while others involved GUI
issues (3 PRs), security problems (1 PR) and poor code quality (1 PR). We
also found two cases in which the condition of the CAU was wrong. For ex-
ample, in the Syncthing app, the developers used a wrong CAU check (i.e., >
Build.VERSION_CODES.N); in PR #91833, they fixed the bug by simply chang-
ing the condition (>= Build.VERSION_CODES.N). It is worth noting that not all
the updates to the CAU condition imply an error in the app: such changes
may be done, for example, when the developers want to support new Android
platforms (e.g., when such changes are done together with an update to the
minSDKVersion).

The distribution of fixing strategies adopted for this kind of issues is in line
with the general trend: most of the issues were fixed by adding or modifying
existing CAUs (7 PRs), while fewer cases required a generic fix (3 PRs).

Lesson 6. There is a risk that data-driven techniques learn sub-optimal
or wrong fixing patterns from apps. However, the number of such
problems is very limited (< 6%). Also, a confidence level-based strategy
such as the one adopted in ACRyL to discard detection rules could
help in limiting this risk.

Dependencies. Like bugs in general, also compatibility issues may be
caused by problems in the dependencies of the app. We found 10 PRs addressing
such issues. The most frequent cause is the presence of a compatibility issue in
a library used by the app (8 PRs).

As expected, the main way to fix such kind of issues is to update the
dependencies (6 PRs). Also, in two PRs it was required a complete replacement
of a dependency, i.e., using different libraries that supported newer SDK
versions.

Lesson 7. A data-driven technique could learn which versions of which
libraries are affected by compatibility issues and warn developers if
problematic dependencies are included in their app. This aspect is
completely ignored by state-of-the-art approaches.

Build & Distribution. A minority of the compatibility issues in the PRs
we analyzed were caused by build issues (e.g., a bug in the build tool) or by
problems related to the SDK version selected by the developers. We found only
8 of such issues. For example, we found a case in which the developers needed
to update the SDK version because the Play Store required them to do so to
keep the app available.

The fixing strategies for such issues were diverse. The two bugs in the
build tool regarded a problem with AAPT2 and, therefore, the solution was to
disable such a tool. On the other hand, the other issues required an increase or

33https://github.com/syncthing/syncthing-android/pull/918
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decrease of the SDK minimum/target version (3 PRs) and 2 PRs required the
introduction of CAUs.

Surprisingly, even if such categories are related to external causes, we found
three Android releases (6.0, 9.0, and 10.0) which introduced changes that may
cause issues related to “Build & Distribution”. For example, Android 6.016

“performs stricter validation of APKs. An APK is considered corrupt if a file is
declared in the manifest but not present in the APK itself. An APK must be
re-signed if any of the contents are removed.” Therefore, the same APK may
be considered corrupt by Android 6.0 and valid by previous versions: a wrong
build configuration may produce an APK with compatibility issues because of
this change.

Lesson 8. Compatibility issues related to Build & Distribution are
rarer and are generally easier to detect (e.g., the APK does not work
at all on some versions). Data-driven solutions aimed at analyzing the
build configuration may be introduced to find such problems.

5.3 RQ3: To what extent can the tools find the compatibility issues that
developers fixed?

Table 7 shows the results obtained by ACRyL, CiD, and both the tools
combined. The results show a substantial tie between the two approaches: while
ACRyL could capture more warnings belonging to the Android APIs category,
CiD captured more issues caused by external factors. In all the cases, the
two tools could mostly capture warnings that were fixed by adding a check
on the SDK_INT. The only exception is represented by PR #221 of the app
OpenRedmine (GH: indication/OpenRedmine): in this case, the issue was fixed
by replacing a dependency. In the dependency itself, however, the problem was
still tied to the presence of a missing or wrong check on the SDK_INT.

We found that existing data-driven solutions are able to capture only a
portion of all the issues that developers fixed in the evolution of the apps: even
combining the two approaches, the total estimated recall achieved is only ∼9%
(6 out of 112 by ACRyL, 7 out 112 by CiD, and 9 out of 112 when combined).
Even if such a percentage is low in general, there are differences depending
on the root cause of the compatibility issue. The available approaches can
not detect problems related to “Support for new Android feature” and “GUI
handling”. Indeed, there are some limitations related to these approaches that
do not allow them to identify such warnings. We discuss below some examples
for each category and we provide possible indications on how future work may
address such issues. Also, it is worth noting that the tools could not detect the
single issue fixed in the PR related to the category “Energy saving”: we do not
discuss this because it is not possible to draw generic conclusions based on a
single instance and there is no inherent motivation for which such a category is
“impossible” to cover for state-of-the-art approaches, differently from the others
we discuss.
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Support for new Android feature. It was shown in Section 5.2 that
even developers struggle finding and fixing such issues. Finding such issues
may be very challenging for API-side approaches: while they may be able to
find backward-compatibility issues related to such problems (e.g., notification
channels used before they were introduced), they would not be able to find
forward-compatibility issues (e.g., notification channels not used after API level
25): if an API is available since a specific version, it rarely means that all the
apps should use it. Instead, a client-side approach able to find issues related to
new Android features may be defined: CAUs similar to (≤ X, {}, newFeature)
can be found in client apps when they start implementing the new feature,
where X indicates the version from which the new feature is available and
newFeature indicates the API sequence needed in the new version: this happens
when client apps want to support older Android platforms. If many clients use
such CAUs, there is a possibility that such feature should be used. For example,
the CAU (≤ 25, {}, {NotificationManager.createNotificationChannel,
NotificationChannel. < init >}) is adopted by 4 apps at the latest date we
analyzed in our study. At the moment, ACRyL uses such a kind of CAUs
only to detect backward-compatibility issues, just like an API-side would do.
Future work aimed at experimenting the use of such CAUs for detecting such
problems may be done.

GUI handling. Issues related to the graphical user interface are rarely
fixed using CAUs: the currently available API-side and client-side approaches
would help finding such problems only in a minority of cases, since they only
take into account the source code. Finding such issues would require the
definition of new approaches that also target the XML files used for defining
GUIs in Android. For example, it would be possible finding patterns of XML
elements that result in compatibility issues through a new client-side approach.

Summary of RQ3. The recall of the state-of-the-art tools, even when
combined, is lower than 9%. Issues related to some root causes (specif-
ically, “Support for new Android feature” and “GUI handling”) are
harder or even impossible to detect for state-of-the-art approaches.
New approaches may be defined to detect such problems.

6 Threats to Validity

Threats to construct validity relate to possible measurement imprecision when
extracting data used in our study. When identifying the fixed API compatibility
issues in Study I, we assume that a compatibility issue identified in an app’s
snapshot Si by ACRyL (CiD) and not detected anymore by the same tool in a
subsequent snapshot has been intentionally fixed by developers. It may happen
that developers stop use an API causing the compatibility issue not due to
this latter, but just because this API is not needed anymore in the app’s code.
Despite this, we applied strict pre-/post-conditions to at least limit the false
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Category Valid PRs ACRyL CiD Combined

A
n
d
ro

id

Functional problems 49 3 3 5
API security issues 25 2 1 2
Support for new Android feature 15 0 0 0
GUI handling 7 0 0 0
Energy saving 1 0 0 0

E
xt

. Build & Distribution 6 0 1 1
App 5 1 1 1
Dependencies 4 0 1 1

Total 112 6 7 10

Table 7 Categories of issues captured by ACRyL, CiD, and both the tools combined.

positive fixing instances (see Section 4). For example, we do not consider an
issue as fixed if the method affecting it was deleted in a subsequent snapshot.

To make the comparison between ACRyL and CiD fair we (i) used the
original CiD implementation as provided by the tool’s authors, and (ii) only
compared the compatibility issues identified by the two tools on the set of apps
on which both tools correctly worked.

In the second study, the automatic mining of PRs based on keywords-
matching mechanisms resulted in the retrieval of some false positives. These
imprecisions were discarded during our manual analysis, thus they did not
affect our findings.

Also, in our manual analysis, we based the classification of the root causes
on what was visible in the PR discussion and in the diff of its related commits.
It is possible that the analyzed information is incomplete, for example due to
the fact that an issue was partially discussed by developers via chat.

Threats to internal validity concern confounding factors, internal to our
study, that can affect the results. In Study I, we performed the calibration
of the ACRyL’s parameter on snapshots belonging to a time interval not
used in our study. The time needed to fix an issue reported in Figure 6 can
contain random errors, because we observe only some snapshots of the apps.
For example, if an issue is introduced on date X and fixed on date X + 20 but
we only keep into account snapshot on dates X + 10 and X + 20, the time
needed to fix is underestimated (10 days instead of 20). The opposite could
have occured as well.

In Study II, threats in this category are related to possible subjectiveness
introduced during the manual analysis. We mitigated this threat by making
sure that each PR was independently analyzed by two authors and that conflicts
were solved via an open discussion.

In our second study we considered only apps available on the F-droid store
(i.e., a subset of the apps considered in our first study). We report in Table 6
some statistics about such apps: the average number of stars, contributors
and LOC are quite high (∼1k, ∼49, and ∼24k, respectively). Therefore, we
can assume that the quality of the apps we considered is good. We only
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considered two apps with less than 10 stars: FRCAndroidWidget (1 PR) and
gift-card-guard (2 PRs).

Threats to external validity represent the ability to generalize the observa-
tions in our study. Study I is performed on a set of 11,863 snapshots from 585
apps. The main issue is therefore related to the fact that all used apps are open
source, and might not be representative of commercial apps. Concerning Study
II, it is possible that our taxonomy of root causes depends on the particular
set of PRs we analyzed, and that in other contexts developers fix compatibility
issues we did not encounter. Also, for availability reasons, we only focused on
open-source applications for both our studies. Specifically, for Study I we used
F-Droid and for the Study II we used the source code of some applications
hosted on GitHub. We could not use closed-source apps for our studies: as for
Study I, the presence of obfuscated code or the generated APKs would not
allow us to track the warnings among different snapshots (the classes/methods
may have different names); as for Study II, we do not have access to any non
open-source repository providing PRs that we could analyze. As for the first
study, it is possible that the precision of the two compared tools changes when
they are used on closed-source apps. As for the second study, we complemented
the taxonomy defined through the PRs with the information available in the
Android release notes. Therefore, we believe that such a taxonomy is quite
generic and also valid for closed-source apps.

7 Conclusion and Future Work

Android fragmentation forces developers to support many versions of the OS
to increase their potential market share. However, the evolution of Android
APIs can make such a task harder, because it increases the effort in testing
and the risks of introducing bugs only reproducible in some versions.

We compared in a large empirical study two different types of data-driven
approaches, API-side (represented by CiD, the state of the art) and client-side
(represented by ACRyL, our new tool), both aimed at detecting compatibility
issues early.

The results show that the two strategies are complementary. The comparison
shows no clear winner as they both have their own advantages and disadvantages.
Also, the performance ensured by the two tools clearly pointed to the need
for more research in this field, with the goal of building better approaches for
detecting compatibility issues (e.g., by combining both techniques in a hybrid
approach).

To provide hints for a research agenda in this field and to understand
possible drawbacks of the approaches defined in the state-of-the-art, we run
a qualitative study in which we manually analyzed 500 pull requests likely
related to the fixing of compatibility issues. After discarding 255 false positive
instances, we (i) built a taxonomy of compatibility issues faced by Android
app developers, and (ii) estimated the recall of the apporaches by checking
if the tools would have been able to detect the issues fixed in the PRs. We
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discussed the categories of compatibility issues we identified, using the acquired
empirical knowledge to draw a number of lessons learned potentially useful for
the building of better detection tools. Finally, we found that state-of-the-art
tools can only detect less than 10% of the issues fixed by developers, with some
categories of the taxonomy (“Support for new Android feature”, “GUI handling”
, and “Energy saving”) left completely uncovered.

Our future work includes the definition of a hybrid approach which uses both
API-side and client-side information to provide a higher variety of compatibility
issues and to mitigate the limitations of both strategies. Besides, as we showed
in Section 5.2, developers would benefit from approaches specifically aimed at
automatically detecting GUI-related and security-related issues. Finally, future
client-side approaches should consider other sources of information besides
CAUs to learn rules and detect issues.
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