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ABSTRACT

The video game industry has experienced a continuous growth in

the last decades. In such a competitive market, it is fundamental

to ensure a great gaming experience to the player avoiding, for

example, bugs. However, video game testing is an extremely chal-

lenging activity, especially considering the extensive number of

gaming scenarios that modern video games support (e.g., 3D worlds

to explore). Thus, more often than not, numerous bugs are discov-

ered only once the game is released and played by millions of users.

For this reason, recent work in the literature suggested to exploit

gameplay videos to support developers in identifying possible bugs

missed during testing: given the large amount of gameplays posted

every day on streaming platforms (> 2M hours), these gameplays

are likely to document failures experienced by the player. Empirical

evidence show the ability of these techniques to identify parts of

the gameplay in which the failure was experienced. However, it

could still be difficult for game developers to reproduce the bug.

In this paper, we propose the idea of developing a technique able

to automate this process, providing the game developer with all

actions performed by the player to reach the faulty state shown in

the gameplay. We present a simple approach which leverages the

on-screen controls overlay available in some gameplay videos. We

show that such an approach can replicate 47.2% of gameplays in

our preliminary study run on a racing game. We discuss the strong

limitations of this first attempt, listing directions for future work

we plan to pursue in order to overcome them.
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1 INTRODUCTION

Video games have emerged as a dominant force in contemporary

society, exerting profound influences on social interactions, cul-

tural paradigms, and economic landscapes. As of 2022, the market

revenue of the game industry surpassed 200 billion USDs, with a

forecast of 250 billion USDs by 2025 [10, 26, 28]. For being success-

ful in such a market it is not enough to only deliver games ensuring

high engagement for the player: Games must exhibit all properties

typical of high-quality software, such as good performance and

reliability with as few bugs as possible.

Video game testing poses well-known challenges related to con-

stant changes in requirements and design and the need for having

an intelligent interaction with the game to extensively exercise

its functionalities. This is the main reason why test automation

techniques are rarely applied by game developers [21, 25], leading

game testing to mostly being a manual process. For example, one

of the games being subject of the study by Zheng et al. [34] was

manually tested by 30 players. For these reasons, the research com-

munity is actively working on proposing techniques supporting

game developers in testing activities (see e.g., [5, 7, 8, 13, 16, 27, 29]).

Among those, techniques have recently proposed to identify bugs

reported by players in gameplays posted on online platforms such

as YouTube1 and Twitch2 [11, 18]. Indeed, millions of hours of

gameplay are posted on these platforms daily [9] and, as for any

other player, the streamers may run into bugs, which are thus docu-

mented in these videos. This makes the gameplay videos a relevant

source to mine for identifying and reporting failures to the devel-

opers. While these approaches [11, 18] are able to identify parts of

the gameplay in which a bug/glitch is documented, there is still an

open problem to face: How to replicate the sequence of actions that

led the game in the failing state. In other words, how can the game

developer reproduce the bug?

1 https://www.youtube.com/ 2 https://www.twitch.tv/
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In this paper, we propose the idea of developing a technique that,

given as input a gameplay video and a set of possible actions that the

game supports (e.g., the game’s supported keyboard keys), produces

as output the sequence of actions which reproduce the portion of

gameplay given as input. The main assumption is that gameplay

videos show on screen the game actions. This would empower

developer to reproduce bugs identified in gameplay videos by state-

of-the-art techniques [11, 18].

In the literature, Intharah et al. [15] introduce DeepLogger in

order to reproduce issues through the anlysis of gameplay videos.

However, DeepLogger presents some limitations, for this reason

we introduced RePlay to overcome these constraints. We started

investigating this problem in the simplest scenario in which the

executed actions are shown on screen and for which the main task

is to export such controls from publicly available gameplay videos.

Also, we developed a technique tailored for one specific game, just

as a proof of concept of the problem we want to address in the long

run. Our approach uses machine learning models to discriminate

between frames showing/not showing the game actions overlayed.

The ones not showing them are discarded as non-gaming frames

(e.g., an advertisement shown on screen) while the others are fur-

ther analyzed to extract the executed actions. The sequence of

executed actions identified in consecutive frames composing the

gameplay can be used to replicate that specific gameplay. While we

are able to correctly identify ∼80% of the performed actions, ∼20%

of errors leads the agent to successfully replicate only ∼50% of the

40 gameplays on which we tested it. Our approach can be applied

to different video games, although the complexity of implementing

the approach will increase with the number of possible inputs the

game supports. Our preliminary work shows that even a simple

approach like the one we propose can replicate some gameplay

videos (for a specific game). We expect more tailored techniques to

effectively address the problem with higher precision and general-

izability across games and perhaps make the approach independent

from the control overlay in the footage, at the cost of increased

demand for computing power.

2 RELATED WORK

In recent years, there has been growing interest in the use of video

analysis for supporting Software Engineering tasks [2, 3, 23, 32].

Ponzanelli et al. [23] introduce CodeTube, a Web-based recom-

mender system that analyzes the contents of video tutorials and is

able to provide, given a query, cohesive and self-contained video

fragments, along with related Stack Overflow discussions. White

et al. [32] show how video analysis can be used to increase the repli-

cability of bugs experienced in Android apps. The authors present

an approach for automating the process of reproducing a bug. Pre-

vious work presents techniques aimed at identifying issues in video

games [14, 19, 20]. Iftikhar et al. [14] propose a model-based testing

approach for automated black box functional testing of platform

games. The authors define a detailed modeling methodology to

support automated system-level game testing and guidelines for

modeling the platform games for testing using our proposed game

test modeling profile. As a more general approach, Paduraru et al.

[20] introduced a similar tool named RiverGame, used to perform

game testing based on artificial intelligence. This tool lets the user

automatically test their products from different points of view: the

rendered output, the sound played by the game, the animation and

movement of the entities, the performance, and various statistical

analyses. Mnih et al. [19] used gameplay videos to train an AI agent

to play Atari games. In this case, the agent was trained by watching

gameplay videos and then could play the game by itself.

Some recent studies [1, 29, 33, 35] used Deep Reinforcement

Learning to support developers in finding issues in video games

(e.g., performance-related). Pfau et al. [22] introduced a framework

for autonomous playing of games, that also performs testing and

bug reporting named ’’ICARUS’’. Tufano et al. [29] introduced

RELINE based on Reinforcement Learning, defining a methodology

to train an agent to play the game as a human while also trying to

identify areas of the game resulting in a drop in FPS.

In some cases, however, such agents might struggle in finding

issues that, instead, humans happen to experience while playing

the game. For this reason, recent studies [11, 17, 18] focused on the

automatic identification of bugs through the analysis of gameplay

videos from popular video and streaming platforms (e.g., Twitch and

Youtube). Lin et al. [18] defined a technique to automatically identify

gameplay videos that report bugs through metadata analysis. Their

approach, however, is not able to pinpoint the specific parts of the

video in which the bug is reported. This makes it unsuitable as a

reporting tool for game developers.

Guglielmi et al. [11] introduced GELID, a novel approach for

automatically extracting relevant information from gameplay video

segments in which streamers reported issues through subtitle and

image analysis. Given as input a set of gameplay videos from the

same video game, such an approach clusters together segments

of the different gameplay videos reporting similar issues (e.g., a

specific bug occurred to many players).

To the best of our knowledge, the only approach in the literature

to reproduce issues highlighted in gameplay videos is DeepLogger

[15]. Given a gameplay video, such an approach relies on a CNN to

extract user inputs. DeepLogger takes into account discrete inputs

(i.e., keys pressed or not pressed) and leaves the extraction of con-

tinuous inputs (e.g., joysticks or mouse) as an open problem. Thus,

this network can only predict user input logs for a game where

training data is available. On the other hand, RePlay considers both

discrete and continuous inputs. This comes at the cost of relying on

input overlays, which are available only on a subset of gameplay

videos.

3 REPLAY

We present RePlay, an approach to extract the sequence of actions

performed by a player to replicate a given gameplay. The main steps

performed by RePlay are: (i) overlay detection, to identify the game

controls shown on screen, if any; (ii) the extraction of the actions

performed by the player; and (iii) the game reproduction. Some

parts of our implementation, meant to be a proof-of-concept, are

tailored for a specific video game, namely Trackmania, a popular

racing game series developed by Nadeo3 and published by Ubisoft4.

We chose Trackmania due to the limited number of controls to be

identified and consequent player actions to be predicted. Indeed,

the possible commands are limited to acceleration, braking, and

3 https://www.nadeo.com/ 4 https://www.ubisoft.com/en-us/
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turning left/right. Also, each game starts with the beginning of

the track: It is easier to identify the initial status of the game to

replicate, as opposed, e.g., to open-world games.

(a) Reference Image (b) Reference Image (c) Mask extracted

Figure 1: Process used to rank and extract mask.

3.1 Overlay Detection

As one can see from Fig. 1a, overlays have synthesized iconogra-

phy, which greatly simplifies extraction and parsing. This, given a

gameplay video as input we first need to detect the game control

overlay (i.e., the part of the screen showing the actions performed

by the player). More specifically, we need to (i) filter the frames in

which the overlay is present (control overlays might be temporar-

ily obstructed in certain frames and, thus, not reliable for input

extraction), and (ii) identify the overlay elements that represent

input devices (e.g., buttons). Overlays may vary not only in position

but also in type across different videos, depending on the input

mechanisms used during gameplay. These overlays can take many

different forms, including joystick movement indicators and on-

screen prompts for keyboard and mouse inputs. Furthermore, the

overlay may vary depending on the game’s specific input require-

ments, such as displaying key bindings alongside corresponding

controls or highlighting specific actions. Thus, to achieve our two

goals, we first identify the position of the overlay in the specific

video, then we filter out frames that do not have the overlay, and

we use the shapes identified to distinguish the parts of the overlay.

Identifying the overlay and building the mask. Our first

step is to run PyShapes [24] on each frame, with the goal of iden-

tifying regular shapes (e.g., rectangles and triangles) shown on

screen. Then, we automatically identify a frame in which the over-

lay featuring the game controls is clearly visible and identifiable.

To do this, we manually define a set of rules regarding the num-

ber, the types, and the relationships between the (detected) shapes

that are supposed to compose the overlay of the game at hand.

The mask of the overlay is extracted from one of the frames for

which all such rules are met. Note that the rules are highly game-

and overlay-dependent. For Trackmania, the mask must include

a triangle pointing to the right, a triangle pointing to the left (for

analog stick inclination) and two rectangles in the center (i.e., ac-

celeration and reverse). If we find exactly two triangles and two

rectangles with the previously-mentioned relationships, we assume

we found a good candidate for extracting the overlay mask. The

mask is defined on the basis of the edges of the detected shapes.

An example of this is shown in Figure 1b, where the green shapes

will be considered as relevant, while the red ones will not. The

process involves locating a frame with clearly visible controls and

exporting a corresponding mask (Fig. 1c).

Filtering out frames without the overlay. We first extract

from a given frame the pixels that are in the overlay mask. Then,

based on the assumption that we do not know the color of the edges

of the overlay, we convert such pixels in grayscale. We obtain an

linear array of pixels in the order they appear in the image scanning

first the rows (left-right) and then the columns (top-bottom). We

extract measures to aggregate such an array of pixels, each of which

is represented by a single value ranging between 0 and 255. Such

measures are: (i) maximum (i.e., the brightest color), minimum (i.e.,

the darkest color), mean, variance, contrast (i.e.,
∑=
8=1 (G8 − Ḡ)2),

and homogeneity (i.e.,
∑=
8=1

G8
1+(Ḡ−Ḡ )2

) where x stands for the pixel

value of each pixel in the array. We train a Random Forest model

[4] using such measures as features to classify whether or not the

frame contains the overlay.

3.2 Control Extraction

Once detected the controls overlay, we extract the inputs from each

frame, creating a sequence that can be played back.

For each frame, we extract a value representing the activation of

each control supported by the game. We support two types of input

devices: buttons, which can be either pressed or not (i.e., they can be

represented through boolean values), and mono-dimensional sticks,

that can have in-between positions (i.e., they can be represented

as decimal numbers). We assume that each shape in the overlay

corresponds to a specific game input device, which can be either a

button or a joystick, and that developers manually map each overlay

shape to the input device at hand. For example, the control overlay

of Trackmania is composed of (i) top and bottom arrows that map

the acceleration and reverse commands (buttons), and (ii) left and

right arrows that represent the inclination angle of the analog stick.

The top and bottom arrows are mapped to the respective buttons

on the pad, while the left and right arrows are mapped to the same

device (main analog stick of the pad): the right and left arrow values

are mapped to positive and negative G-axis values of the analog

stick, respectively. We use two different procedures to extract the

input value for overlay shapes representing buttons and sticks.

Buttons. For buttons, the shape in the overlay is completely

coloredwith an overlay-dependent color when the button is pressed,

while it might be transparent (depending on the overlay at hand)

when the button is not pressed. Since the color used by the overlay

to represent the “button pressed” event strictly depends on the

overlay at hand and on its settings, we take such a color (active color)

as an input for this step. We first extract all the pixels contained

in the overlay shape. Then, we check if all the pixels are within

a certain distance from the active color: If they are, it means the

button is pressed, otherwise it is not. We do this because the active

color might not fully cover the game capture below, but it might

be semi-transparent. To compute the distance between pixel colors

we compute the difference between each color channel in the RGB

space (red, green, and blue) and sum them. We say that a pixel is

equal to the active color if the distance between them is lower than a

threshold C . For our experiments, we use the threshold C = 50, which

was determined through manual experimentation to optimally suit

the purpose of detecting similar colors.

3
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Sticks. For sticks, the shape in the overlay is gradually colored

(again, with an overlay-dependent color) to represent the percent-

age of stick inclination. To predict the percentage in the arrows,

we use a regression machine-learning model. The model can es-

timate the percentage value of inclination of a stick for a given

overlay element. To do this, since we assume a shape represents

mono-directional sticks (we do not support bi-directional sticks),

we first summarize the whole shape content by extracting some

pixels from it.

Specifically, for the triangular shapes used in the overlay of

Trackmania, we extract the pixel lines beside the upper- and lower-

edges of the triangle. In addition, an orthogonal line is derived

from the center of the left or right base to the opposite vertex. This

extraction process aims to provide the model with information

about how colored is the triangle. We use the Bresenham’s line

algorithm [31] to get the pixel lines from the overlay shape.

For each line of pixels we compute two measures. The first one

represents the size of the longest sequence of consecutive pixels that

are within a certain distance from the active color, while the second

one represents the percentage of pixels that are within a certain

distance from the active color (i.e., we also count pixels that are not

consecutive, for example when some other elements go above the

overlay). We compute the distance between pixel colors in the same

way we do for buttons and filter them based on the same threshold

C . We use such measures, extracted for each line, as features for a

linear regression model that predict the stick inclination in a range

between 0 and 100, based on the overlay behaviour. A training set

is needed for this step, which can be easily built for overlays that

also report the numeric value of the percentage of inclination.

3.3 Gameplay Reproduction

We implement an agent through which we execute the sequence of

commands extracted from the gameplay video.We implemented the

agent using the emulator for the gamepad available in vgamepad

[30]. We take as input the output of the previous step to create

a simplified list of commands for the gamepad APIs. We set the

frame-rate of the game at 30 FPS. Then, to replicate the commands,

we make sure that we replicate the input devices status inferred

in the previous step each 1

30
of a seconds. If a given frame 8 is

classified as without overlay during the first step, there will be no

input associated to it. In such cases, we assume the input status did

not change from the previous frame and, thus, we keep the input

devices status extracted for the frame 8 − 1.

4 EMPIRICAL STUDY DESIGN

The goal of our study is to understand if it is possible to detect

command acquisition and replicate the game through RePlay. We

aim to answer the following research questions (RQs):

RQ1: To what extent is RePlay effective in identifying frames that

include the controls overlay?

RQ1 assesses the performance and reliability of the approach

in identifying frames that contain the control overlay.

RQ2: To what extent does RePlay allow to infer the input commands?

RQ2 evaluate the accuracy of the approach to infer input

commands in the gameplay analysis.

RQ3: To what extent does the agent allow to reproduce the games?

With this last RQ, the goal is to evaluate the accuracy of the

agent to reproduce the gameplay, based on the command

gathered with RePlay

4.1 Context Selection

To evaluate the first two steps of RePlay (RQ1−2), we built three

annotated datasets. First, we randomly sampled 3 gameplay videos

of Trackmania from Twitch (∼10 hours), downloaded them, and

extracted the frames after fixing the frame-rate at 30 FPS. We sam-

pled 496, 770 frames and annotated them by indicating whether the

overlay was visible or not. This allowed us to define the dataset

�>E4A;0~ , which contains pairs ⟨5 A0<4, >E4A;0~⟩. We further sam-

pled 165 frames and manually annotate them with the information

regarding the status of the two buttons (pressed or not pressed)

based on the information provided in the overlay (i.e., their color).

As a result, we defined the dataset �1DCC>=B , which contains

triples ⟨5 A0<4,1DCC>=, BC0CDB⟩, where each frame is repeated twice

(one for each 1DCC>=) and BC0CDB is a categorical variable (pressed

or not pressed). Finally, some overlays show inside the triangles

the percentage number indicating the stick inclination. We rely

on them to build a third dataset of randomly sampled 246 frames.

We manually labeled them with the percentage indicated in the

triangles. Thus, we obtained the dataset �BC82: , which contains

triples ⟨5 A0<4, BC82:, ?4A24=C064⟩, where each frame is repeated

twice (one for each BC82:) and ?4A24=C064 is a numerical (integer)

variable ranging from 0 to 100. To evaluate the last step of RePlay

(RQ3) we built a last dataset. We randomly sampled 9 videos report-

ing entire game sessions of Trackmania from Twitch, all of them

different from the ones used for building the previous datasets. Be-

sides, we recorded 31 gameplay videos using the same maps and

overlay shown in the Twitch clips. We use the whole RePlay on

such videos to extract commands and define the agents to replicate

them. We ran each game with the agent as a player and recorded

the videos. As a result, we obtained �60<4B , which contains pairs

⟨E834>>A868=0; , E834>A4?;820C43 ⟩, where E834>>A868=0; is the video of

the game played by a human player and E834>A4?;820C43 is the one

played by the agent defined with RePlay. Figure 2 shows an example

of a frame paired with the portion of the image exported.

Figure 2: Example of frame and controls portion exported.

4.2 Data Collection and Data Analysis

To addressRQ1, we use�>E4A;0~ . For each instance ⟨5 A0<4, >E4A;0~⟩,

we first extracted the features previously defined for the first step of

RePlay from 5 A0<4 . Then, we trained and tested our model on the

4
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dataset containing such features and the >E4A;0~ value as a label.

We used the implementation and default configuration of Random

Forest available in Weka [12]. We ran a 10-fold cross validation

to assess the performance of the trained model. We compute and

report accuracy, precision, and recall.

To answerRQ2, we ran two separate evaluations for buttons and

analog sticks. As for the former, we use �1DCC>=B : For each instance

⟨5 A0<4,1DCC>=, BC0CDB⟩, we ran our button pression detection ap-

proach on the 5 A0<4 for the shape of the 1DCC>= at hand. We com-

pare the predicted button pression status with the BC0CDB label. We

report accuracy, precision, and recall for such a step. As for the latter,

we use�BC82:B : Again, for each instance ⟨5 A0<4, BC82:, ?4A24=C064⟩,

we extracted from the 5 A0<4 the features defined for the second

step of RePlay (stick inclination) for the shape of the specific BC82:

at hand.We trained and test a linear regression model on the dataset

containing the extracted features and the ?4A24=C064 value as labels,

again using the implementation and default configuration available

in Weka. We ran a 10-fold cross validation to assess the perfor-

mance of such a model. We report the obtained Mean Absolute

Error (MAE) and Relative Absolute Error (RAE).

To address RQ3, we manually compared, for each instance of

�60<4B , the E834>>A868=0; and E834>A4?;820C43 by extracting 1-second

clips every 3 seconds of the videos. We started from the beginning

of the videos and proceeded until we found a difference in the clips,

by synchronising the two videos based on the start of the control

sequences. We consider the clips different if any of the control sec-

tions are not matching exactly. We measure, for each video, time

percentage of correctly replicated game by dividing the time at

which the first difference has been found by the video duration.

4.3 Replication Package

We publicly release the implementation of RePlay and the script

we used to run the experiment and the dataset of results for each

RQs in our replication package [6].

5 EMPIRICAL STUDY RESULTS

The results of RQ1 show that the model has an accuracy of 98% and

precision and recall values of 0.99 in overlay detection. Based on

the evaluation results, we can conclude that the model to identify

frames showing the overlay, in our context, is highly effective.

Regarding the button pression detection (RQ2), RePlay achieves

99.0% of precision, 97% of recall 96% of AUC. As for the analog

stick (again, RQ2) inclination prediction, instead, RePlay achieves

Mean Absolute Error of 3.16 and a Relative Absolute Error of 12.88%.

While the button detection is very promising, we observed that

the models makes a small error in predicting the stick inclination

which could hamper the perfect replication of a game.

Finally, as for RQ3, we found that our agents can reproduce,

on average 47.23% of the games we analyzed. While this result

might seem slightly underwhelming, it is important to consider

the difficulty of the tracks. In particular, the agent finds in tight

turns and very rapid changes of direction especially difficult. This

also happens when the player performs maneuvers very close to

the boundaries of the map, such as walls. On the other hand, if the

turn is simple, the agent is generally able to complete the entire

turn exactly as in the original video. This observed behavior of the

agents may have a strong impact on the accuracy of specific games.

We conducted an additional analysis to evaluate to what extent

the agents’ actions are synchronized with the players actions. To

this end, we continued analyzing the 1-second clips also after the

first error and only focused on the overlays. This allowed us to check

what would have happened if the agent did not make a mistake. In

this case, we found that, on average, 81.21% of the commands are

performed correctly.

The results obtained during the analysis aimed to answer RQ3 re-

mains reliable and enables us to evaluate the quality of the proposed

approach, as well as the implementation of the agent involved in

the gameplay replication process.

6 THREATS OF VALIDITY

In this section we summarize the threats of validity of our work.

Construct Validity. In our evaluation, we assumed that the game-

play videos, that we want to reproduce, report an overlay that

shows user input commands through coloured each key input.

However, gameplay videos do not always feature an overlay

showing input playback, and when they do, they do not necessarily

follow the standards used in our study as a reference.

Internal Validity. The selection of the threshold for extracting

commands through colour similarity introduces a potential bias that

may influence the overall accuracy of overlay commands extraction.

Additionally, the accuracy of the models involved in the processing

applied and the potential error that resides within them can have

an impact on the overall outcome.

External Validity. While certain components of our approach (i.e.,

frame identification) are agnostic to the specific game used, others

may exhibit dependence (i.e., controls overlay).

7 CONCLUSION AND FUTUREWORK

Video games are one of the most solid pillars of the development

industry, so improving the stages of the software development

process can be important to support companies in creating better

gaming experiences. We presented RePlay, a simple approach able

to (i) distinguish frames with command overlay from those without,

(ii) extract commands and (iii) replicate the games. Despite the

very promising results, RePlay also has clear limitations. First, it

requires that the gameplay videos report an overlay that shows

user input commands. However, this is not always true. Second,

some steps of RePlay are closely dependent on the game under

consideration, restricting its generalizability unless these aspects

are tailored for the targeted game. Also, we assume that game

overlays are defined as specific geometric shapes. To adapt this

approach to new games, it is required (i) the extraction of commands

and (ii) the definition of an appropriate mask. To mitigate both such

limitations, future research can explore the use of reinforcement

learning, similarly to previous work [1, 19, 29]. This strategy would

allow to make our approach less video game-dependent and even

overlay-independent.
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