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Abstract 

Congestive heart failure (CHF) is a chronic heart disease that 
causes debilitating symptoms and leads to higher mortality and 
morbidity. In this paper, we present HARPER, a novel auto-
matic detector of CHF episodes able to distinguish between 
Normal Sinus Rhythm (NSR), CHF, and no-CHF. The main ad-
vantages of HARPER are its reliability and its capability of 
providing an early diagnosis. Indeed, the method is based on 
evaluating real-time features and observing a brief segment of 
ECG signal. HARPER is an independent tool meaning that it 
does not need any ECG annotation or segmentation algorithms 
to provide detection. The approach was submitted to complete 
experimentation by involving both the intra- and inter-patient 
validation schemes. The results are comparable to the state-of-
art methods, highlighting the suitability of HARPER to be used 
in modern IoMT systems as a multi-class, fast, and highly ac-
curate detector of CHF. We also provide guidelines for config-
uring a temporal window to be used in the automatic detection 
of CHF episodes. 

Keywords:  

CHF, Machine Learning, DSS, Wearable, IoMT 

Introduction 

We are living in the era of wearable devices, which are im-

portant components of human health for the prevention of dis-

eases or pathological conditions. These devices have become so 

widespread that they play an essential role in healthcare and tel-

emedicine systems [1]. The key aim of incorporating technol-

ogy into healthcare systems is to increase the quality and usa-

bility of medical devices and facilities by providing improved 

interfacing capability between patients and caregivers [2, 3]. In 

remote healthcare monitoring, the Internet of Medical Things 

(IoMT) played a critical role. The Internet of Medical Things is 

primarily used to collect remote data for patients via wearable 

sensors/devices and store it in cloud databases. These data are 

available to caregivers for real-time review and implementation 

and specific systems to provide automatic analysis [4, 5]. A re-

cent example of a telemedicine system is ATTICUS [6, 7]. 

ATTICUS provides a bustier wearable [8] able to acquire at 

least 6-lead continuous electrocardiogram (ECG) signal and 

other vital parameters. A Decision Support System (DSS) [7] - 

structured as a distributed AI software - is in charge of provid-

ing the early diagnosis of several pathological conditions, 

which could require immediate attention by doctors.  

One of such conditions is Congestive Heart Failure (CHF), a 

common pathophysiological condition common, with around 

26 million adults diagnosed with the disease worldwide in 2014  

[9].  

Thus, much effort was undertaken by the scientific community 

to aim at automatically identify CHF. Most of the works pro-

pose a detector of CHF that provides a binary classification of 

a signal in CHF and Normal Sinus Rhythm (NSR) [10-13]. A 

minor part of the scientific community has modeled the CHF 

detection problem as a multi-class prediction problem to avoid 

that pathological signals different from CHF are erroneously 

classified as CHF [14]; in such cases, three classes are typically 

used: CHF, NSR, and no-CHF (i.e., pathology different from 

CHF). In both cases, a variety of temporal observations were 

adopted. For example, Xiong et al. [13] experimented with us-

ing an ECG segment with a fixed length in terms of samples, 

while Porumb et al. [12] relied on observations at heartbeat 

level. The main drawback of such approaches is that they pro-

vide only binary classifications [10-13] or depend on other 

safety-critical algorithms to obtain the ECG segmentation. 

In this paper, we introduce HARPER (detector of congestive 
Heart fAiluRe ePisodes for mEdical suppoRt), an automatic 

method to detect CHF in a single-lead digital ECG. 
HARPER is a near-real-time approach capable of multi-class 

identification of a given windowed ECG signal in CHF, NSR, 

and no-CHF (i.e., pathological rhythm, but different from 

CHF).  

The main contributions of this paper are the following:  

� we introduce HARPER, a reliable and independ-

ent detector because it is capable of providing a 

multi-class identification (instead of a binary 

one). It is not dependent on other algorithms 

(e.g., an R peak detector) for the ECG segmenta-

tion because it involves a fixed-length segmen-

tation. 

� Since CHF is a chronic condition [5], we con-

ducted a complete study to assess the duration of 

the best temporal window in which to observe 

CHF. This was done within two scenarios: (i) in-
tra-patient intended as the case when no per-

sonal data is available for a new subject to be 

monitored in ATTICUS  and (ii) inter-patients 

when personal data are available in the training 

set. 

The rest of the paper is structured as follows: Section 2 

describes the planning of our study, highlighting the 
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workflow of HARPER and the datasets used, the experi-

mental procedure and the validation schemes. Then, in 

section 3 “Results”, the results obtained in all the experi-

mental settings are described. Finally, section 4 concludes 

the paper by reporting analysis on the various outcomes 

and highlighting the future works. 

Methods 

In this section, we present the high-level workflow of 

HARPER. Then we describe the performed ECG pro-

cessing and the context of this study. Moreover, we de-

scribe the experimental procedure and the validation 

schemes. 

HARPER Workflow 

The high-level workflow of HARPER is described as follows. 

First, we consider w the length of an observation window (in 

seconds). Then, HARPER takes the ECG signal from the patient 

as input, having a length greater than or equal to w · f, where f 
is the sampling frequency of the ECG signal. Next, the ECG 

signal is divided into several segments based on the segmenta-

tion window. On each segment, we perform a feature extraction 

step. Finally, the extracted features are submitted to a trained 

machine learning model which performs the signal classifica-

tion. In this way, as the output of the last step, HARPER pro-

vides a label for the most probable classification among NSR, 

CHF, and no-CHF. 

ECG Signal Processing and Features Extraction 

The signal processing performed on the ECG starts with the 

detrend operation, where the average of the signal is computed 

and subtracted from the input signal. Then the following litera-

ture features [15] are extracted: (i) energy of Maximal Overlap 

Discrete Wavelet Transform (MODWT), using db2 as 

Daubechies wavelet transform and 15 levels of decomposition 

[16], Autoregressive (AR) Model of order 16 [17], Multifractal 

Wavelet Leader [18], using db3 as wavelet transform and Fast 

Fourier Transform (FFT). 

 
1 PhysioNet ECG data - https://github.com/mathworks/physionet_ECG_data/ 

2.3 Study Design 

The final goal of this study is to assess the suitability of 

HARPER as a detector of Congestive Heart Failure.  

To achieve this, we designed two research questions: 

� RQ1: What is the optimal value of the w parameter? 

With the first research question, we aim to tune the w 

parameter to understand how many seconds of obser-

vation are needed to perform the best prediction; 

� RQ2: What is the classification effectiveness of 

HARPER? With this second research question, we 

want to evaluate the accuracy of HARPER in the de-

tection of CHF episodes. 

We also want to evaluate HARPER in different validation tech-

niques such as intra-patient and inter-patient (where the data of 

a subject is not or partially considered in the training of the 

model, respectively) strategies. 

Context of the Study 

In our study, we used a dataset of 162 ECG recordings extracted 

from the PhysioNet database [19], provided by MathWorks1. In 

the final dataset, there are 36 recordings of subjects with NSR, 

96 with no-CHF anomalous episodes (i.e., arrhythmia), and 30 

recordings from subjects affected by CHF. The reason behind 

the use of this dataset is that (i) it is composed of signals from 

different datasets, providing a more heterogeneous set of ECG 

recordings, and (ii) it contains not only CHF recordings but also 

that no-CHF. In this way, HARPER can distinguish abnormal 

recordings with CHF episodes from abnormal but contains no-

CHF heart diseases. 

Baseline approach 

We selected a recent approach from the literature, i.e., the ap-

proach proposed by Yang et al. [14] as a reference baseline for 

the evaluation of HARPER. Beyond the high accuracy, we 

chose this work because the authors perform a three-class iden-

tification of ECG in NSR, CHF, and Coronary Artery Disease 

(CAD). Their approach combines an ECG fragment alignment 

(EFA) with principal component analysis (PCA) and a convo-

lutional network (EFAP-Net) to ensure heartbeats consistency 

between subjects eliminating heart rate differences. Finally, 

they use a linear SVM as a classifier. They also successfully 

applied intra-patient and inter-patient validation techniques.  

Table 1 - Evaluation of the best temporal ECG window and classifiers in the intra-patients scenario. 
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The main drawback of such an approach is that it involves the 

ECG segmentation at the heartbeat level, which could be less 

suitable in real-time scenarios because of the high computa-

tional cost of a robust R peak detector. Due to the consideration 

that CHF is a chronic condition, in HARPER, we tried to avoid 

any dependence on external algorithms, and we only focused 

on a fixed-length observation of the ECG. Indeed, in the context 

of ATTICUS, we needed to design a highly reliable near real-

time approach of CHF episodes in two scenarios: when per-

sonal data are available in the monitoring and when a new 

ATTICUS user has to be continuously monitored. 

Experimental Procedure 

For what concerns RQ1, as we want to evaluate the best ECG 

temporal window to provide an accurate multi-class detection 

(therefore a better observation of CHF episodes), we need to (i) 

split the ECG recordings into segments and (ii) assess the best 

classifier that is possible to define on the top of that data is. 

First, we defined a set of possible durations of time windows. 

Furthermore, we performed the ECG segmentation based on the 

defined temporal windows and the extraction of the previously 

described features. We selected a set of time windows ranging 

from 5 to 120 seconds. We extracted a total of 321 features, 

where 256 are resulted from FFT, 16 from MODWT, 16 from 

Multifractal Wavelets and 33 from the AR Model. 

Next, for the intra-patients scenario, we built different machine 

learning pipelines, testing out different models in combination 

with pre-processing and sampling techniques. In this way, we 

aimed to assess which is the best temporal window and which 

could be the best model to use for the specific intra-patients 

scenario. For example, for RandomForest, we only applied a 

min-max scaling, but for SVM, we applied standardization. We 

also evaluated the impact of data balancing techniques, such as 

SMOTE [20]. In detail, we first removed highly correlated fea-

tures, removing those having a Pearson correlation coefficient 

r greater than 0.95. Then, we applied a tree-based estimator fea-

ture selection technique, where the impurity-based feature im-

portance is computed. The parameters used were 100 as the 

n_estimators and 1.25*median as the threshold for feature im-

portance. In this way, we discarded the irrelevant features ac-

cording to their importance. The resulting number of features 

could vary based on the temporal window used for the ECG 

segmentation. The final step of our classification pipeline con-

sisted of a combination of a random split of training and test set 

(i.e., 80-20), data sampling (i.e., SMOTE), data pre-processing 

(i.e., scaling, standardization), and a classification algorithm. 

We used the default parameters for each classification algo-

rithm, as provided by the Python library scikit-learn2. Finally, 

we opted for using the best model obtained from the intra-pa-

tients scenario to assess the best window duration also in the 

inter-patient scenario. The pre-processing scheme used was the 

same.   

We evaluated the classification performance using widely-used 

metrics for classification tasks, namely Sensitivity, Specificity, 
Precision, F1 score. 

 
2 scikit-learn - https://scikit-learn.org/ 

Table 2 - Dataset overview after ECG segmentation  

 

With respect to RQ2, taking into account the results of RQ1 and 

to assess the classification performance of HARPER, we con-

ducted its validation considering the best ECG time window 

combined with the best performing classification pipeline. 

Moreover, we compared our approach with the selected base-

line [14] to assess if HARPER has comparable performance to 

a state-of-the-art approach for CHF detection. As we used the 

random split technique to split the dataset into training and test 

set, we decided to perform 1000 executions to reduce a possible 

bias due to the randomness. On the other hand, for the intra-

patient protocol, we performed n executions where n corre-

sponds to the number of patients in our dataset (i.e., 162). A 

specific patient is selected for each execution as the test set, and 

the remaining are used as the training set. In this way, the model 

observes a brand-new set of ECG recordings not evaluated be-

fore. We used the same classification metrics in RQ1 (i.e., Sen-
sitivity, Specificity, Precision, F1 score.), taking the average 

value across all patients. 

Figure 1 - Metrics distribution for the intra-patient scheme. 

G. Rosa et al. / A Multi-Class Approach for the Automatic Detection of Congestive Heart Failure in Windowed ECG652



Results 

In the following sub-section, we describe the results achieved 

to answer our research questions. 

RQ1: ECG Segmentation 

In Table 1, the results of our experiment in the intra-patients 

scenario are reported. The percentage scores are displayed for 

each time window related to the classification metrics corre-

sponding to each classification pipeline, where we described 

the used model and the data pre-processing techniques.  

The primary outcome of this experimentation is that an obser-

vation of 25 seconds allowed to obtain the best overall metrics 

with a pipeline composed only of a RandomForest model. In 

this case, the results exceeded 0.99 on all the evaluated classi-

fication metrics. In Figure 1, the boxplots of the classification 

metrics are obtained by experimenting with each time window. 

In particular, from this distribution of data, it is also possible to 

derive how the time observation with the highest median of the 

classification performances is the 25 seconds window. How-

ever, the 20 and 25 time windows are the best in terms of ro-

bustness because even the outliers are approximately above 

0.96. On the contrary, this happens for the 120s time window. 

For example, the Specificity score is below 0.88, considering 

the outliers below the first quartile. 

The results of the intra-patient validation protocol showed that 

in this specific condition, the best time window is defined by 60 

s and not 25 s as previously obtained in the other scenario 

(93.13 vs. 91.64 in terms of F1 score).  

The reason behind this could be that in the case of a patient that 

is never examined before, a larger time window (i.e., a longer 

ECG buffering) is needed to achieve an accurate classification. 

RQ2: HARPER Classification and Validation 

Considering the results from RQ1, we used a reference time 

window of 25 seconds and the raw RandomForest as a reference 

classification pipeline. We also executed the validation on the 

other temporal windows to compare and verify if the previously 

selected time window is the best also in an inter-patient sce-

nario. In Table 3, the average percentage classification metrics 

of the validation protocol are reported for the inter-patient 

scheme. We achieved a score slightly worse than the one 

achieved in RQ1 (where we reported the results of a single ex-

ecution), but we aimed to preserve the repeatability of our ex-

periment by avoiding the contribution of randomness. 

Table 3 – Classification metrics of HARPER using a window 
of 25 seconds and inter-patient validation. 

We compared our two validation results with the baseline ap-

proach where we only considered the NSR and CHF classes 

from the multi-class detection because one of our classes 

(ARR) differs from the one proposed by Yang et al. [14] 

(CAD). In Table 4, we reported the results compared to the 

baseline approach. On the left side, there are the results of the 

intra-patient validation where the baseline approach 

slightly outperforms HARPER for a few percentage 

points. This could be due to their perfectly balanced da-

taset. For the inter-patient validation (right side), in some 

cases HARPER outperforms the baseline on both the 

NSR and CHF classes. Mainly for the CHF class, we have 

better Sensitivity and Specificity values but a lower Pre-

cision value. This means that our approach has more false 

positives than the baseline. 

Threats to validity 

The best procedure would have involved the tuning of all design 

parameters on one dataset and their validation on a completely 

different dataset of patients. To mitigate this limitation and 

work on the only available dataset, we opted to introduce robust 

validation schemes: L1SO and x1000 80-20 Cross Validation. 

Table 4 - Classification performance compared with the base-
line approach [14] of intra-patient validation (left) and inter-

patient validation (right).  

 

Conclusions 

The results of this work clearly highlight that a longer (60 s) 

observation of the ECG is needed to best detect CHF episodes 

when monitoring in real-time a new user of an IoMT system. 

The duration can be reduced (25 s) once enough data points are 

made available to the ML pipeline. 

HARPER is highly accurate, and it showed great potential to be 

embedded in scenarios of continuous monitoring due to its high 

accuracy in detection and technological independence. Indeed, 

no other algorithms are needed to obtain the ECG segmentation. 

HARPER can be considered reliable because it also concerns 

the classification of pathological rhythm different from CHF. 

As part of our future agenda, we plan to validate the accuracy 

of HARPER (i) when common ECG noises (electrode move-

ment or motion artifact) are spread in the signal and (ii) within 

the signals directly acquired by the ATTICUS smart vest. 
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