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Abstract—Heart Rate (HR) is one of the mostly used elec-
trocardiogram (ECG) feature in many automatic detectors of
anomalies. This paper deals with a preliminary study on a novel
approach which, through the combination of Machine Learning
(ML) and Compressed Sensing (CS), aims at retrieving vital
information from a digital compressed single-lead electrocardio-
gram (ECG) signal. As a potential key information to estimate
the heart rate, this study focuses on the identification of R-peak
occurrences. The study has been conducted on two different types
of signal both obtained from the compressed samples provided
by a CS algorithm, already available in literature. The results
demonstrate that the use of CS in combination with a ML
technique can find high competitiveness when compared to a state
of the art method working on the uncompressed ECG signal.

Index Terms—Internet-of-Medical-Things, Machine Learning,
ECG Signal, Heart Rate, Compressed Sensing, Feature extrac-
tion, Wearable devices.

I. INTRODUCTION

Thanks to the Internet-of-Medical Things (IoMT), there has
been a huge spread of wearable devices for healthcare applica-
tions. Machine Learning (ML) and Compressed Sensing (CS)
are some of the tools involved in this kind of systems. Indeed,
at the end of the first decade of 2000, Compressed Sensing
has been investigated for healthcare applications [1]–[3]. The
theory behind the Compressed Sensing basically states that
when dealing with specific signals, satisfying the condition to
be sparse in some domain, they can be reconstructed from
a smaller number of samples, than that the actually needed
by Nyquist rate sampling. The reconstruction phase from the
compressed samples usually involves complex algorithms with
a relatively high computational cost that should be able to
guarantee the signal integrity by keeping clinical relevant
features [5], [6]. This cost is balanced by the very small
payload of the wirellesly transmitted data provided by the
wearable device that performs data compression. In general,
the CS methods require low computational effort for the
compression, which is performed on the wearable device,
and high computational effort for the reconstruction, which
is usually performed on a more powerful device (e.g laptop),
[13], [14]. However, not all the ECG features are relevant for
some clinical evaluation, thus in such applications it is not

needed to reconstruct the entire ECG signal [15], [16]. For
example, in case of the most well-known cardiac arrhythmia,
the Atrial Fibrillation, there is a huge literature dedicated to
the process of automatic detection. For this purpose, there are
works which take in consideration both the morphological and
rhythmic aspects of the ECG, such as the one proposed in [15],
[16] but there are also many works which implement a very
accurate detector of Atrial Fibrillation [8], [17], where the
base feature is only the Heart Rate. The work presented in [5]
represents one of the first and best approaches of Information
Retrieval in compressed signals. The authors considered a
framework where the ECG signals are represented under the
form of CS linear measurements. The QRS locations have
been estimated from the compressed signal by computing
the correlation of the compressed ECG and a known QRS
template. The results show that this solution is competitive
with methods applied to the reconstructed signal.

The detector proposed in this paper aims at identifying the
number of R-peaks, by means of Machine Learning, in a signal
obtained from a compressed version of a windowed portion of
a raw single-lead ECG. The study has been conducted on two
types of signal, both outputs of the CS method described in
[7]: (i) the first one obtained from a 1-bit quantization process,
and (ii) the second one obtained from the multiplication of a
sensing matrix with the original signal.
The proposed detector presents the advantage of not requiring
the reconstruction of the signal. In addition, this approach
aims at identifying the R-peaks occurrences with a high
Compression Ratio, by keeping comparable accuracy in the
classification process, with respect to the state of the art.
Furthermore, in case the reconstruction of the entire ECG
would be needed, the domain of the CS method in [7] allows
to obtain a better reconstructed signal. Finally, the detector
involves the use of Machine Learning predictive models.
This represents another advantage because such models may
have a very small computational cost. In this paper, the key
detection is focused on the identification of R-peaks. The R-
peak occurrences can represent a crucial information of an
ECG, which can lead to a highly precise estimation of the
heart-rate.

The rest of the paper is structured as follows. Section II
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describes the dynamic sensing scheme proposed in [7], which
has been adopted for providing the compressed data to the
proposed R-peak occurrences detector. Section III presents the
novel approach for R-peak occurrences identification. Section
IV reports the design and the results of the empirical study
conducted to evaluate the different versions of the proposed
approach. Finally, Section V concludes the paper and provides
suggestions for possible future research directions.

II. BRIEF DESCRIPTION OF THE DYNAMIC SENSING
SCHEME

The R-peak occurrences detector proposed in this paper has
been tested on two types of compressed data provided by the
CS dynamic sensing scheme proposed in [7]. This CS method
is based on a sensing matrix, which depends on the power of
each frame of the ECG signal. In particular, it provides a vector
y of M samples that is a compressed version of the vector
x of N ECG samples. In the following, a brief description
of the CS-based method [7] is reported. Let us consider the
vector x, a frame of N samples of the ECG signal. The value
xavg is obtained as the average of x. Then, the vector xa is
evaluated as follows:

xa = | x− xavg | (1)

According to a threshold xth, which is chosen experimentally,
the Power Information Vector (PIV) p is constructed. This
vector contains the values of one at the indices where the
vector xa exhibits values higher than xth, and zeros, otherwise.
The sensing matrix Φ is defined as a circulant matrix, where
the first row is the vector p:

Φ =
p(1) p(2) . . . p(N)

p(N − CR+ 1) p(N − CR+ 2) . . . p(N − CR)
...

...
. . .

...
p(CR+ 1) p(CR+ 2) . . . p(CR)


(2)

where, CR = N
M is the compression ratio. The vector y,

containing the compressed data, is given by the multiplication
between the sensing matrix Φ and x. All those processing
steps are intended to be performed by a wearable device,
battery powered and wirelessly connected to Internet. Thus,
it sends the vectors p and y to another device, having much
more processing capabilities (e.g. a laptop), for performing the
signal reconstruction of x. In particular, p contains informa-
tion related to the power of the acquired N samples and has a
size of N/8 bytes, and y contains the M compressed samples
and has a size of b ·M/8 bytes, where b is the number of bits
used for representing an ECG sample. From those two vectors,
the reconstruction of the signal x is performed as follows. At
the beginning, from the vector p, the sensing matrix Φ is
constructed (2). The dictionary matrix Ψ is defined according
to the Mexican hat wavelet kernel, which has been considered
to define the domain where the signal x is sparse;

Ψ =
[
Ψbase,u

]
(3)

where, u is a vector of N ones, and Ψbase is given by:

Ψbase =

[
ψ(2, 0),ψ(2, 2),ψ(2, 4), . . . ,ψ

(
2, 2

⌊
N − 1

2

⌋)
,

ψ(4, 0),ψ(4, 4),ψ(4, 8), . . . ,ψ

(
4, 4

⌊
N − 1

4

⌋)
,

. . . ,ψ(N, 0)

]
(4)

with:

ψ(a, b) =
2√

3a · π1/4
·

[
1−

(
n− b
a

)2
]
· e−

1
2

(
n−b
a

)2
(5)

with n = [0, . . . , N − 1]T . By knowing the matrices Φ
and Ψ, the Orthogonal Matching Pursuit (OMP) algorithm
is performed to estimate the α coefficients vector, which
represent the sparse coefficient of the signal in the Mexican
hat domain. Finally, once the α is available, the reconstructed
signal x̂ is obtained as follows:

x̂ = Ψ ·α (6)

In order to detect the R-peaks occurrences, it would be
needed to perform the reconstruction and then to apply any
kind of detector. The reconstruction is performed by OMP,
which exhibits a computational complexity of O((N +M)S),
where, S is the number of iterations of the OMP algorithm,
which is in any case lower than N . The idea underlying this
paper is not performing the OMP reconstruction, but executing
the R-peak detector algorithm directly on the compressed
vector y or the PIV, p.

III. THE PROPOSED APPROACH

For identifying R-peak occurrences, the proposed ML-based
method has been implemented by considering separately as
input the two signals provided by the CS method previously
described: in the PIV version of the proposed tool, the input
of the classifier is the signal resulting from the process of 1-bit
quantization, the PIV, p; while, in the CS version, the input
is the signal resulting from the CS process, y.

The PIV and the CS detectors basically differ in the tech-
nique of Digital Signal Processing expected in the workflow.
This is depicted in Fig. 1. The final stage of classification is
handled by a Machine Learning classifier which provides the
number of R-peaks in the windowed segment of the signal.

A. The Machine Learning Classifier

The Machine Learning classifier chosen in this preliminary
phase of the study is the Random Forest, first proposed
by Breiman [10]. A random forest basically represents a
combination of tree predictors. In this context, a tree is defined
as a function of a randomly initialized vector. This vector
follows these properties: (i) it is sampled independently and
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Fig. 1. The different workflows for the two proposed versions of the R-peak occurrences detector.

(ii) with the same distribution as all the other trees in the
forest. In other words, a random forest integrates trees and
each of them provides a class prediction, as outcome.

The class with the highest number of votes represents the
prediction of the entire model. Breiman in [10] defines the
algorithm as follows:
"a random forest is a classifier consisting of a collection of
tree-structured classifiers h(x,Θj), j = , ... where the Θj

are independent identically distributed random vectors and
each tree casts a unit vote for the most popular class at input
x".
Thus a Random Forest represents a tree-based ensemble with
each tree depending on a collection of random variables. More
formally, suppose given a k-dimensional random vector:

A = (A1, ...,Ak)
T (7)

representing the input, and a random variable Y, representing
the output. In this case, assuming an unknown joint distribution
TAB(A,B), the goal – as expected by the algorithm – is to
find a prediction function f(A) for predicting B. The function
f(A) is determined by a loss function L(B, f(A)) and defined
to minimize the expected value of the loss:

EAB(L(B, f(A))) (8)

where the subscripts denote expectation with respect to the
joint distribution of A and B. In the classification scenario, if
the set of possible values of B is denoted by B′, minimizing
EAB(L(B, f(A))) for zero-one loss gives:

f(a) = argmax
b∈B′

[T(B = b|A = a)] (9)

otherwise known as the Bayes rule [18].
Thus intuitively, the Random Forest algorithm expects to

divide the source data in a random number of subsamples. For
each of these – based on a random set of features – a decision

tree is built. The final prediction is taken depending on the
individual votes, which fall into leaves. The results, from each
individual tree, are gathered and avareged. An example of such
a procedure, is depicted in Fig. 2. In the classical Breiman
implementation, the training dataset covers around the 63 %
of the total data while the remaining (approximately the 37
%) is used to validate the ensemble of the decision trees, in
other words the model.

IV. EXPERIMENTAL ASSESSMENT

In this Section, details about the experiments conducted to
compare and validate the two versions of the proposed tool,
are given. The dataset used for the assessment is the Physionet
[9] MIT-BIH Normal Sinus Rhythm Database1. This database
includes 18 long-term ECG recordings of subjects referred to
the Arrhythmia Laboratory at Boston’s Beth Israel Hospital.
The ECG recordings belonging to this database do not present
significant arrhythmia episodes; they include 5 men (aged 26
to 45) and 13 women (aged 20 to 50).

To compare the results of the presented approach (working
on the compressed data), the Pan-Tompkins method [11]
(working on the original signal) has been used as state of
the art. Indeed, it is largely considered as the QRS detector of
reference in the literature. The setup phase for the training and
testing of the model has consisted of the following choices:
• Feature Alignment: an observation window with a fixed

length of 2 s, has been chosen. Thus, considering a
sampling frequency of 128Hz, a portion of 256 samples
is obtained from a raw ECG signal.

• Class labels: for a supervised experiment, a 3-class clas-
sification model has been considered. More specifically,
each class contains the information related to the R-peak
occurrences in each of the 2 s ECG segments. The 3
classes chosen in this part of the study are: (1) for 1
single R peak, (2) for 2 R-peaks and (3) for 3 R-peaks.

1https://physionet.org/content/nsrdb/1.0.0/
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Fig. 2. Example of a Random Forest workflow.

• Validation of the model: to evaluate the accuracy of
the presented approach, a classical Leave-1-Person Out
(L1PO) cross-validation has been used. The data has been
decomposed in n folds, one for each subject. Then, each
of such folds has been used as test set and the union of
the remaining folds as training set. This type of validation
process has the effect that the data related to a single
patient were embedded once in the test dataset and n-
1 times in the training dataset. This technique allows to
build a classifier which is not trained and tested on the
data belonging to the same patient. It has been chosen
to evaluate the model in the most challenging scenario:
a patient-independent detection tool.

• Number of instances: due to the long-lasting records in
the NSR database and the costly validation, the proposed
choice was to work with a sample size having 95% of
confidence level and 5% of confidence interval, with
respect to the population. In this case, the population is
a long-term ECG record. Considering that each record
lasts 24 hours, there is a population of around 43 200 2 s
segments. Thus, for the specific purpose of this study,
around 380 instances have been randomly selected for
each of the records belonging to the dataset. The selection
of the instances respected the representativeness of the
class label for each population.

To evaluate the classifier, the metrics 11-14 have been con-
sidered for class-specific analysis (where each of the possible
classifications is evaluated, e.g. class for occurrence equal to
1, 2 and 3), while metrics 15-16 for global analysis:

PRECISION =
TP

TP + FP
(10)

RECALL =
TP

TP + FN
(11)

MCC =
(TP ∗ TN)− (FP ∗ FN)√

((SP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (SN )
(12)

F1score =
2 ∗ TP

(2 ∗ TP ) + FP + FN
(13)

ACCURACY =
TP + TN

TP + TN + FP + FN
(14)

ICI =
FP + FN

TP + TN + FP + FN
(15)

where TP, FP, TN, FN indicates "correctly classified", "in-
correctly classified", "correctly rejected" and "incorrectly re-
jected", respectively; ICI is the "Incorrectly Classified In-
stances" parameter, SP is the sum of positives and SN is the
sum of negatives.

A. Proposed method with PIV

For the evaluation of this detector, a fixed threshold of
0.3mV in the process of 1-bit quantization has been used, see
Fig. 3. This is the xth defined and presented between equations
1 and 2. In Tab. I the class-specific metrics are reported. The
main outcome from Tab. I is that the classification is more
accurate when dealing with ECG windows containing 2 or 3
R-peaks. Class 1 presents a high loss in terms of precision. As
indicated, the Pan-Tompkins method, applied to the original
raw signal, was the reference to the state of the art. For such
a purpose, the work presented in [12] has been used. The
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Fig. 3. Example of a signal submitted to the process of 1-bit quantization.
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Fig. 4. An example of the compressed samples contained in y for several values of CR.

TABLE I
DETAILED GLOBAL METRICS EVALUATED FOR EACH CLASS.

Metrics by class Precision Recall MCC F1score

R-peaks = 1 0.361 0.898 0.564 0.515
R-peaks = 2 0.919 0.906 0.826 0.912
R-peaks = 3 0.913 0.904 0.818 0.908

TABLE II
PERFORMANCE COMPARISON IN TERMS OF GLOBAL METRICS OF THE

METHOD BASED ON PIV AND PAN-TOMPKINS.

Method Accuracy ICI

PIV 0.905 0.095
Pan-Tompkins 0.928 0.072

comparison between the performances obtained by the PIV
method and the Pan-Tompkins approach are reported in Tab. II.

The outcome of this experiment mainly reveals that the
detection in the PIV stage is highly comparable with a
milestone in the state of the art.

B. Proposed method with compressed samples

For this version of the proposed approach, the performance
at 4 different CR have been investigated. The highest ratio
evaluated is 8, which means a 32 samples input to the classifier.
An example of compressed signals at several CR is shown in
Fig. 4.

The results obtained in this study are reported in Tab. III.
The loss in terms of global accuracy with respect to the state

of the art becomes significant in this study. What emerges
here is that the accuracy in the identification of R-peaks
does not highly depend on the compression ratio, considering
the subset 2, 4, 6, 8. This experiment has shown that, when
dealing with applications of R-peak occurrences detection,
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TABLE III
PERFORMANCES COMPARISON IN TERMS OF GLOBAL METRICS AT

DIFFERENT CR.

CS Method Accuracy ICI

CR = 2 0.743 0.257
CR = 4 0.741 0.259
CR = 6 0.727 0.273
CR = 8 0.726 0.274

the Power Information Vector embeds much more information
with respect to the compressed signal. Thus, for this specific
type of detection, the quantization stage provides better results
than the Compressed Sensing full algorithm. However, the
compressed signal does not have any knowledge of the Φ
matrix. In other words, this result can be due to the fact that
the compressed signal does not embed the information on how
it has been obtained from the original signal.

V. CONCLUSIONS AND FUTURE WORKS

In this work, a study about the possibility to perform infor-
mation retrieval in signals derived from an ECG, is reported.
Specifically, the aim of the work was the identification of
the number of R-peaks (as important feature in the process
of precise estimation of heart rate) in a windowed signal.
For this purpose, two types of signals have been taken in
consideration: (i) the PIV, which is obtained after a stage of
1-bit quantization and (ii) the CS, which results after the entire
process of Compressed Sensing. The classification stage has
been assigned to a very well known classifier – the Random
Forest – which provides a final model’s classification based
on the individual trees’ classifications.
The results show that the PIV detector is highly comparable
with the most used method in the state of the art, the Pan-
Tompkins approach, with a loss of approximately 2% on the
global accuracy. The PIV detector shows comparable results
even when compared with a similar approach in the state of
the art, the one by Da Poian et al. [5]. In this work, the authors
report a sensitivity of around 91 % when dealing with a signal
compressed with a CR approximately equal to 6.67. The PIV
detector also shows similar values (approximately 90 % but
with the possibility to reach values of CR equal to 12. On the
other hand, by using the detector with the compressed signal
as input, the global loss – in terms of accuracy – assumes a
significant amount. The huge advantage in building a detector,
such as the one proposed in this work, relies on (i) the very
low-cost elaboration to obtain the Power Information Vector in
the CS domain and (ii) on the benefit that – even if there is a
specific need to work with the full ECG signal – with a single
PIV it is possible to reconstruct up to 12 ECG signals. As
future works, many studies can be further conducted, such as
(i) trying to use different categories of classifiers – specifically,
the LSTM Recurrent Neural Network, highly suited in case
of time-series – and (ii) trying to detect cardiac pathologies
directly in the CS domain.
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